E Gelover, C Chen, and H L

Johns Hopkins National Proton Therapy Center

Objectives

To evaluate surface-based target localization accuracy for spot scanning proton treatments in a 360° compact gantry using transmission proton radiographs.

Introduction

- ▶ Surface Guided Radiation Therapy (SGRT) systems provide three key functionalities:
- 1. Guidance during initial setup using patient's body contour.
- 2. Relative intra-fraction monitoring i.e., acquiring a reference surface image after x-ray based IGRT has been performed to track a site specific region of interest.
- 3. Absolute monitoring i.e., using surface information without the aid of x-ray based imaging to position and track the patient.
- ▶ Absolute monitoring requires the validation of the relationship between SGRT coordinates and radiation isocenter.

This work describes a methodology to associate the spatial information provided by a surface imaging system and the irradiation field of a spot scanning proton therapy system. The measurements described here enable quantification of SGRT/radiation isocenter coincidence.

Methods

1. Surface imaging vs radiation isocenter coincidence

- Deliver A CT simulation of the phantom was performed to make available the external contour as a localization surface.
- ▶ Using our treatment planning system (TPS), isocenter was placed on the central sphere of the phantom.
- ▶ The structure set from the TPS was exported to the AlignRT system to perform surface measurements.
- ▶ For comparison purposes, the phantom was placed at isocenter using x-ray based IGRT and SGRT separately.
- ho Proton transmission radiographs where generated using a nominal proton energy of 156.6 MeV, a squared field of 10.5 imes 10.5 cm² and 0.5 cm spot spacing.

Figure 1:Isocube placed on top of a 2D-Ionization Chamber array. The 2D-IC was used as detector to produce proton transmission radiographs.

2. QA tests for nonradiographic localization and positioning systems

Prior to acquiring proton radiographs, the standard commissioning tests recommended by $TG-147^1$ were performed:

- ▶ Spatial drift (translational and rotational)
- ightharpoonup Spatial reproducibility
- ▶ Static localization accuracy.

Figure 2:Translational shifts and rotations applied to test reproducibility and localization accuracy.

 \triangleright Determination of field of view (FOV)

The parameter used to evaluate SGRT performance regarding FOV was the fluctuation in the real-time delta values (RTDs).

Results

1. Surface imaging vs radiation isocenter coincidence

- \bullet Figure 4 shows that SGRT localization accuracy matched x-ray based IGRT performance. The difference between the two images was assessed using the gamma test γ =1.0% /0.5 mm.
- ullet After introducing a known shift of 1 mm to the phantom position based on surface imaging, the gamma passing rate decreased from 99 % to 76 %.

Figure 3:Isocube proton radiography obtained with a 2D-IC array.

Figure 4:IGRT based localization vs surface-imaging based localization. $\gamma = 99\%$

Figure 5:IGRT based localization vs surface-imaging based localization + 1 mm shift. $\gamma = 76\%$

2. QA tests for nonradiographic localization and positioning systems

Figure 7:AlingRT translational drift. $\bullet \ \, \text{Spatial drift and reproducibility showed values} < 1.0 \ \text{mm} \ \& < 0.5^\circ$

ullet Static localization accuracy showed values ≤ 1.0 mm $\& < 0.5^\circ$

 \bullet The FOV available for accurate localization was found to be 12.5% less in comparison to the scanning plane dimensions in the beam's eye view (BEV).

Figure 8:AlignRT FOV performance relative to the scanning area of the Hitachi PROBEAT system $(30 \times 40 \text{ cm}^2)$. Green = Optimal, Yellow = Acceptable, Red = Poor.

ullet RTDs fluctuaction - Green area \leq **0.2 mm**, Yellow area < **1.0 mm**, Red area \geq **1.5 mm**.

Conclusions

- ▶ Proton radiography using a 2D-IC array provides a fast method to associate surface-imaging information and the irradiation field of the proton machine.
- ▶ Due to FOV limitations, surface-based localization in a 360° compact proton gantry has reduced capabilities.
- Current performance restrains the applicability of AlignRT to relative mode only.
- ▶ Inter and intra-fraction motion tracking appropriateness must be evaluated case by case.

Reference

[1] Willoughby, Twyla, et al. "Quality assurance for nonradiographic radiotherapy localization and positioning systems: report of Task Group 147." *Medical physics* 39.4 (2012): 1728-1747.

Contact Information

► Email: gelover.e@jhu.edu