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INTRODUCTION

To investigate the impact of image quality of CBCT on
Radiomics analysis.

RESULTS CONCLUSIONS

Image quality can significantly impact radiomics analysis
using CBCT. Image quality augmentation is vital for
establishing accurate and robust CBCT based radiomics
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AIM

CBCT provides important information of patient anatomy and
radiomics textures during the treatment course, which can be
valuable for predicting the treatment outcome. However, CBCT has
very limited image quality due to scattering, beam hardening,
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as training data set. The plan CT was registered to each fraction
CBCT. We then use the CycleGAN model to augment CBCT to
match with the registered CT. Once trained, the model was used
to augment the CBCT from 3 testing patients. The ROI N _
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For radiomics analysis, all radiomics features of the pCT and
CBCT VOlIs on each fraction of the patient were extracted from
the Gross Tumor Volume (GTV) of each fraction of the lung
cancer patient.
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Table1. The daily fraction Post-CBCT to CBCT of
Figure 4: The qaily fraction Post-CBCT to CBCT of  Patient 1. The highly correlated relationship is
Patient 1. Fraction1 to fraction3 Radiomics features  consistent from fraction to fraction, and for the first
ratios, CT as ground truth. 61 features the post-processing is consistent with
original CBCT (highly correlated).
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