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INTRODUCTION

The field of radiation therapy is ever-changing, with
technologies and distributions of patient populations
evolving over time. One of the biggest advancements
in recent years is the development of artificial
intelligence technologies, and their application into
radiation therapy. However, as we move forward,
concerns regarding safety in using the model on
patients has risen greatly. In this study we show how
to add in an uncertainty estimation to a deep learning
model’s prediction—a way for the model to say “I
don’t know” when given data that is unlike that it has
seen before—and we apply this method to dose
prediction.
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The prediction estimation and variance are defined as
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where 5*(x*, W, ---,W!) is the trained model’s prediction given an
input x and a t set of weights WY, -, Wi.
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DEEP LEARNING ARCHITECTURE
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N 3 X 3 X 3 Padded Convolution,
Activation, Group Norm, Dropout

& 2X2X 2 Upsample, 3 X 3 X 3 Padded
Convolution, Activation, Group Norm, Dropout

Concatenate 2 X 2 X 2 Maxpool

DATA AND TRAINING

» 70 Prostate CTs with their segmentation
« 54 training, 6 validation, 10 test patients
* 96 x 96 x 24 array
* 5mm x5 mm x 5 mm voxel size
» 1200 Pareto optimal plans per patient
+ 84000 plans total

» Training the network
* Mean squared error (MSE)
* Dropout set to 0.125 throughout the network

« Scaling network uncertainty to the voxel error
* Due to fact that uncertainty is not directly
correlated to voxel error (e.g. uncertainty — 0
as dropout — 0)
- We define a scaling factor, m, such that
« m*uncertainty > 95% of validation data

CONCLUSIONS

learning models can be obtained.

model.

implementation in a clinical setting.

model’s own learning/generalization error
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+ We show a method that can be used so that the uncertainty of deep

+ We characterize a curve to relate the uncertainty to the error in the

 This work can be used to greatly improve the safety of model

« This uncertainty represents the precision in the data as well as the
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Scaling Uncertainty to Voxel Error

0.5 Figure 1: Plot of voxel-wise absolute error |true —

predicted| versus the uncertainty. The uncertainty is
2 based off of the standard deviation of 50 Monte Carlo
{’ model predictions, and its value is dependent on the
amount of Dropout used in the model (uncertainty — 0
as dropout — 0). We correlate our uncertainty to our
error, by finding the slope, m, of a line y = mx, such
that 95% of the validation data points are below the
uncertainty. We solve m = 9.585. On the test data, we
find that 97.49% of the error is below the dotted line.
This can be used to characterized the lower and upper
bounds of our prediction, shown later in Figure 4.
High uncertainty does not necessarily equate to high
0. 05 error, but it means it is more likely to have high error.
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Figure 2: Dose
washes (top row),
Error (bottom left),
and uncertainty
(bottom right) for an
example test
prostate patient.
Model uncertainty is
calculated as the
standard deviation
of multiple Monte
Carlo Predictions
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Figure 3: Comparison of predicted (solid blue) vs ground truth
(dotted black) for an example test patient. Confidence bounds are
calculated using prediction + m * uncertainty, where m = 9.585.
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