

Evaluation of PTW microSilicon diode detector for small field dosimetry with the Elekta Versa HD linear accelerator

VIRTUAL MICOMP MEETING

¹Hyo Kyeong Kang, ¹Chae-Seon Hong, ¹Jin Sung Kim

¹ Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea

INTRODUCTION

- Accurate beam data measurement for small field radiotherapy is challenging task
- The IAEA TRS-483 CoP for small field dosimetry recommends detectors should be small relative to the minimum field size, have a high signal to noise radio(SNR) & high spatial resolution
- Diamond based detectors is often used for small field beam measurement because of their many advantages, but they are expensive
- We evaluate the performance of relatively inexpensive new detector that can replace diamond detectors

AIM

 The evaluation of the new microSilicon diode detector (PTW, Germany) for small field dosimetry by comparing with different detectors

METHOD

- Machine: Elekta Versa HD
- Energies: 6 MV, 10 MV, 6 MV FFF, 10 MV FFF
- Detectors: PTW microSilicon, PTW60019 microdiamond, PTW31022 PinPoint 3D(IC), PTW31021 SemiFlex 3D(IC)
- PTW TRUFIX system was used for all chambers
- · Measurement condition
- SSD: 100cm, depth:10cm
- In this work,
- Compare output factors of each detector for various square field sizes
- Compare field size(FWHM) from profile, and FHWM value was average value which of cross-plane and inplane

RESULTS

Output factor Comparison

- The detector orientation is parallel to beam
- Reference field size: 10x10 cm²
- Sensitive volume of detectors (mm³)

microDiamond	microSilicon	PinPoint 3D	SemiFlex 3D
0.004	0.03	16	70

Figure 1. Relative output factor of photon beams measured by the different detectors

- The output factor for all detectors decreased with decreasing of field size
- The output factors measured by microSilicon is most similar to output factor of microDiamond
- The difference of 1x1 cm² field output factor between microDiamond and other detectors: 2.04% (microSilicon), 3.66% (PinPoint 3D), 8.60% (SemiFlex 3D)

Radiation field size (FWHM) Comparison

- As the chamber volume increases, the FWHM becomes overestimate
- The average FWHM difference between microDiamond and other detectors: 0.29% (microSilicon), 0.48% (PinPoint 3D), 0.95% (SemiFlex 3D)

Figure 2. FWHM according to field size and energy

CONCLUSIONS

- The performance of PTW microSilicon detector is more similar to microDiamond detector than ionization chambers
- The smaller active volume of detector, the more similar to nominal field size
- In small field size(under 2x2 cm²), the difference between the output factor of microDiamond and that of microSilicon is the smallest
- However, there is a performance difference between microDiamond and microSilicon, so it is good to use with caution

ACKNOWLEDGEMENTS

 This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2020R1C1C1005713).

REFERENCES

[1] Palmans H, Andreo P, Huq MS, Seuntjens J, Christaki KE, Meghz- ifene A. Reply to "comments on the TRS-483 protocol on small field dosimetry". *Med Phys.* 2018;45:5666–5668.

[2] Lechner, Wolfgang, et al. "Detector comparison for small field output factor measurements in flattening filter free photon beams." *Radiotherapy and Oncology* 109.3 (2013): 356-360.

[3] Laub, Wolfram U., and Tony Wong. "The volume effect of detectors in the dosimetry of small fields used in IMRT." *Medical physics* 30.3 (2003): 341-347.

CONTACT INFORMATION

hyokk722@yuhs.ac