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CHALLENGES SUPERVISED LEARNING BASED APPROACH RESULTS

Optimization of medical imaging system performance should be
guided by task-based measures of image quality (IQ), which
quantifies the ability of an observer to perform specific tasks.

The estimation ROC curve (EROC) [1] has been proposed as a
figure-of-merit (FOM) for evaluating the performance of an
observer on general joint detection and estimation tasks. The ideal
EROC observer set up the upper limit of all other observers.

Approximating the ideal EROC observer is a more challenging
problem compared to approximating 10 for single detection task or
joint detection/localization task, mainly because the EROC
observer test statistic [1] is defined as an integral function of the
ideal likelihood ratio and the ideal estimate, which depends on the
estimate of parameters.

It is difficult to design a single loss function for approximating the
EROC-IO for joint detection and estimation tasks by use of
supervised deep-learning methods.

INNOVATION

The EROC-IO test statistic is innovatively decomposed into a
multiplication of ideal likelihood ratio and utility weighted posterior
mean. A multi-task convolutional neural network (CNN) is
constructed for approximating the ideal estimate and the ideal
likelihood ratio, and ultimately for EROC-IO approximation.

The proposed method is an alternative approach to conventional
numerical approaches and can approximate the ideal EROC
observer test statistic and estimate in complex cases.

IDEAL EROC OBSERVER

For a given joint detection/estimation task, the 10 test statistic
T;(g) can be represented as:

T;(g) = [ pr(0)A(glo)u(6,(g), 0)do.

0.H
Here A(glo) = E-E0

represents the true parameter vector associated with the signal,
and u(8,(g),0)is the utility function of the estimate ,(g) when
the signal is actually present.

is a conditional likelihood ratio, @

The |0 estimate 8,(g) can be represented as:
8,(g) = argmax{f pr(6)A(gl6)u(B,(g). 6)d6}.
The utility weighted posterior mean U(g) can be represented as:
U(g) = [ pr(0lg, H)u(8,(g), 0)do
Without loss of generality, T,(g) can be decomposed into the
multiplication of A(g) and 7/ (g) by using Bayes' rule:

@) = f L o 0lg Hu(@1(0).6)d6 = A@U(®,

We proposed to approximate ideal EROC observer with joint supervised learning and
Markov-Chain Mote Carlo (MCMC) strategy.

A multi-task convolutional neural network (CNN) is constructed for approximating the test
statistic of EROC-IO for a joint detection and estimation task.
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Fig. 1. The multi-task CNN architecture employed for approximating the ideal EROC
observer test statistic. The first part of convolution layers are shared for both tasks.

As shown in Fig. 1, the CNN for the detection task is to approximate the ideal likelihood
ratio A(g), and the CNN for the estimation task is to directly approximate the ideal
estimate 8,(g) for signal-present hypothesis.
The utility weighted posterior mean U can be estimated by applying Monte Carlo
integration on the approximated 8,(g). The estimated U (g) = %Zleu(ﬁl(g),s(j)), where
08U) is a sample from the density pr(8|g, H,).

pr(gla, Hl)pr(ﬁ)q(élﬂo})
pr(g|0W, Hy )or(60)q(01)[0)
is the acceptance rate, 8 is the candidate vector when given 8U), and ¢(8|6"?) is the
proposal density which is designed to be symmetric, i.e. g(8]89))= q(610]8).

, where o

A Markov chain can be constructed with @« = min |1,

The ideal test statistic T;(g) can be approximated by multiplying U(g) and A(g).

The loss function of the estimation task for approximate 8,(g) is defined as the negative
of the utility function because this definition also minimizes the Bayesian risk [1].

The loss function of the detection task for approximate A(g) is defined as sigmoid cross
entropy considering it is a monotonic transformation of the likelihood ratio [2].

The multi-task CNN optimizes the two loss functions sequentially in one iteration.

EXPERIMENTS

The ability of the proposed method to approximate ideal EROC observer is explored
under the background-known-exactly (BKE) and background—known-statistically (BKS)
cases. The joint detection and estimation task defined in this study is to detect a known
signal with unknown amplitude with Gaussian noise.

The imaging system is defined as g = H f(r) + n, where g is measurement data, H is a
continuous-to-discrete imaging operator, f(r) is the object function with a spatial
coordinate r and n is measurement noise.

In BKE case, the background is defined as zero. In BKS case, type 1 lumpy object model
and type 2 lumpy object model (correlated Gaussian background) were considered. The
joint tasks can be viewed as a surrogate for tumor detection in positron emission
tomography (PET) images, where the task is to detect a lesion and estimate its maximum
standardized uptake value [3].

+ In BKE case and the BKS case with type 2 lumpy background, the 10 test
statistic and estimate can be analytically determined, which will be compared to
demonstrate the approximation based on the proposed method.

'

Fig. 2. Top and bottom rows show images with type 1 and type 2 lumpy
background, respectively. These images are employed for the BKS study.
Images shown from left to right on each row are examples of signals (left),
signal-present measurement without noise (middle), signal-present noise
measurement (right).

MULTI-TASK CNN TRAINING PERFORMANCE

+ In BKS case with type 1 lumpy background, the approximated 1O is compared with a

numerical joint detection and estimation observer called channelized joint observer (CJO) [4]
because the ideal estimate is intractable for conventional methods such as MCMC for a
Gaussian utility function.
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+ As shown in Fig.4, the loss functions for the detection and estimation tasks can converge

although the network minimizes the two loss functions sequentially in one iteration.

« The convolution layers for the detection task and estimation task share some common

features, and the noise adding strategy is effective to prevent overfitting.
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Fig. 4. Validation loss with respect to the iterations on BKS case with type
background.
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Fig. 3. Testing EROC curves for the IO approximations in different cases. (a) BKE case; (b) Type 2
lumpy background for BKS case; (c) Type 1 lumpy background for BKS case.

For BKE case and BKS case with type 2 lumpy background models (Fig.3 (a) &(b)), the resulted
AEROC values were close to those of the analytical 10, respectively.

For BKS case with type 1 lumpy background model (Fig. 3(c)), the resulting AEROC value was
much greater than that obtained by CJO. Because CJO is a numerical observer and its EROC
curve should lie under that produced by 10, Fig. 3(c) indicates that the performance of the
approximated IO with the proposed method is much better than CJO.

REFERENCES

[1] E. Clarkson, "Estimation receiver operating characteristic curve and ideal
observers for combined detection/estimation tasks," J. Opt. Soc. Am. A (2007)

[2] W. Zhou, H. Li and M. A. Anastasio, "Approximating the Ideal Observer and
Hotelling Observer for Binary Signal Detection Tasks by Use of Supervised
Learning Methods," in IEEE Transactions on Medical Imaging, vol. 38, no. 10, pp.
2456-2468, Oct. 2019.

[3] A. Wunderlich, B. Goossens and C. K. Abbey, "Optimal Joint Detection and
Estimation That Maximizes ROC-Type Curves," in IEEE Transactions on Medical
Imaging, vol. 35, no. 9, pp. 2164-2173, Sept. 2016.

[4] L. Zhang, B. Goossens, C. Cavaro-Ménard, Patr Le Callet, and Di Ge,
"Channelized model observer for the detection and estimation of signals with
unknown amplitude, orientation, and size," J. Opt. Soc. Am. A 30, 2422-2432

ACKNOWLEDGEMENTS

« This work was supported in part by the NIH under Awards EBO020604,
EB023045, NS102213, EB028652, CA233873 and CA223799, and in part by the
NSF under Award DMS1614305.

Corresponding author: Mark A. Anastasio (email: maa@lllinois.edu); Hua Li
(email: huali19@illinois.edu)



http://www.tcpdf.org

