

Self-supervised Deep Learning for Low-dose CT Image Denoising

Ti Bai, Dan Nguyen, Steve Jiang

Medical Artificial Intelligence and Automation (MAIA) Laboratory,

Department of Radiation Oncology,

UT Southwestern Medical Center, Dallas, Texas

Ti.Bai@UTSouthwestern.edu

UT Southwestern
Medical Center

Radiation Oncology

INTRODUCTION

- Lowering the exposure would inevitably induce higher quantum noise
- Supervised deep learning-based denoisers can enhance the low-dose CT (LDCT) image substantially
- Its success requires massive of pixel-level paired LDCT and normal dose CT (NDCT)
- Hardly to collect in real clinical practice

AIM

 Propose a probabilistic deep self-learning framework by only using the LDCT (PSL), alleviating the paired data scarcity problem

METHODS

• Image prior: Gaussian distribution

$$X \sim N(\mu_X, \sigma_X^2)$$

• Noise: Gaussian distribution

$$\epsilon \sim N(0, \sigma_{\epsilon}^2)$$

• Main assumption: a set of pixels Y^E are predictable using the information of the rest pixels Y^C in the image

$$\max \prod_{t=0}^{T-1} P(Y_t^E | Y_t^C)$$

• Shift-invariant property: there exist strong correlations among the down sampled 4 sub-images since their starting positions are close enough with each other.

ARCHITECTURE

Training phase:

$$\arg_{W} \min \sum_{t=0}^{T} \sum_{E \in \{UL, UR, LL, LR\}} \frac{\left(Y_{t}^{E} - \mu_{X_{t}}^{E}\right)^{2}}{\left(\sigma_{X_{t}}^{2}\right)^{E}} + \log\left(\left(\sigma_{X_{t}}^{2}\right)^{E}\right) + \left(\left(\sigma_{X_{t}}^{2}\right)^{E}\right) + \frac{\left|\mu_{X_{t}}^{E} - \frac{1}{3}\sum_{C}\mu_{X_{t}}^{C}\right|}{\lambda} - 0.1\left(\sigma_{\epsilon_{t}}^{2}\right)^{E}$$

$$\left\{ \mu_X^E, \left(\sigma_X^2\right)^E, \left(\sigma_\epsilon^2\right)^E \right\} = \Phi_W(Y^C)$$

Testing phase:

$$\overline{Y^E} = rac{Y^Eig(\sigma_\epsilon^{-2}ig)^E + \mu_X^Eig(\sigma_X^{-2}ig)^E}{ig(\sigma_\epsilon^{-2}ig)^E + ig(\sigma_X^{-2}ig)^E}$$

RESULTS

- Compared to LDCT images, PSL increases PSNR/SSIM values from 27.61/0.5939 to 30.50/0.6797.
- outperformed the TV and N2V based denoisers
- similar image impression as the clinically used NDCT

DATASETS

- AAPM 2016 Low dose Challenge
- Split origin 10 train cases into 8/2 for training/testing

CONCLUSIONS

- A PSL framework was proposed to solve the paired data scarcity problem regarding the deep learning based LDCT denoising task
- The inherent shift-invariant property was exploited to characterizes the pixel correlations

REFERENCES

- Krull, A., et.al, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
- Laine, S., et al. in Advances in Neural Information Processing Systems.
- Preprint version of this work: https://arxiv.org/abs/2006.00327

