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INTRODUCTION

Radiomics allows high-throughput mining of quantitative imaging features from
medical images to understand biological phenotypes and treatment responses.

Image features are affected by variabilities in imaging systems and multiple

observers delineating regions of interest. Classical statistical approaches, which are

commonly used to quantify such variability in image features don’t provide the means
to visualize their interconnections. This presents challenges in identifying robust

image features [1-3] as well as understanding their interconnections.

AIM

In this work we propose a graph-based method to (i) create robust mini-networks
useful for modeling response and (ii) visualize existing radiomics signatures on a

network to help in their interpretation.

METHOD

Multiple feature-sets were generated by applying perturbation chains [4,5].
Perturbation chains have been shown to capture variability observed due to test-

retest imaging.

Network graph was derived by averaging partial correlation coefficients across

feature sets.

The sparsity of the network was controlled by thresholding partial correlations.
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RESULTS

Understanding feature interconnections in an
open source dataset

+ CT scans of 420 patients from the TCIA
dataset for lung cancer were used to create

radiomics network graph.

50 feature sets were derived by perturbing

original images and segmentations, using a
CERR radiomics toolbox [5].

A dense network was initially generated to

obtain an idea of interconnections between

features. The network was further split into its

components to understand feature clusters Dense network resulting from perturbations of Various components of the network. A threshold Details of one of the largest components in the
: TCIA lung data, consisting of 420 scans. Partial of partial correlation was applied, cutting edges network. Image features from published signatures
correlation coefficients were used to build the with weak correlations. Nodes in red indicate the can by displayed on the network.
network, considering correlations between features from Aerts et al [6] signature.

features after removing their linear dependence
on other features.
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