

Using Radiomics to Study Statin Use and Omega-3 Use in Prostate Cancer Patients

D Zheng1*, Y Shi2, E Wahle1, L Krajewski1, X Liang3, Q Du2, C Zhang2, S Zhou1, M Baine1

- 1 University of Nebraska Medical Center, Omaha, NE
- 2 University of Nebraska Lincoln, Lincoln, NE
- 3 University of Florida, Jacksonville, FL

INTRODUCTION

Prostate cancer is the second most common cancer among males. It was estimated in the United States that 1 in 7 men will be diagnosed with prostate cancer at some point in their lifetimes¹. There have been known links between prostate cancer and the use of statins (a common heart medication) and omega-3 fatty acids (fish oil supplements)². The observed associations are complex and controversial, drawing active research for further elucidation. We therefore explore the novel application of using radiomics, a new field of medicine that involves extracting large amounts of quantitative data from medical images such as CT scans or MRIs.

AIM

To analyze the association of radiomics pattern and statin and omega-3 use in prostate cancer patients.

METHOD

A panel of 944 radiomics features were analyzed on 95 male patients with prostate cancer.

Clinical Information

 Patient diagnosis details and use of statins or omega-3 supplements were collected

Imaging and Contouring

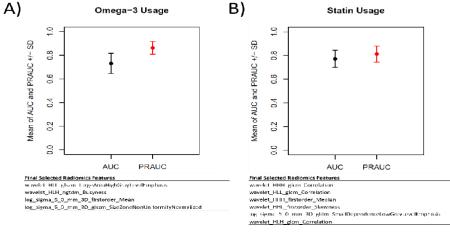
- High resolution T2-weighted MRI scan was used for radiomics analysis
- The prostate gland and the peripheral region of the prostate were contoured (Example contours shown for two patients in Figure 1)

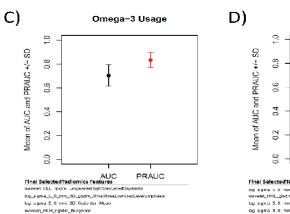
Radiomic Feature extraction

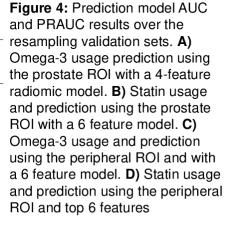
- All images were normalized to be compatible for analysis
- A total of 944 radiomic features were extracted for each contour using 3D-Slicer

Data Analysis

- Heatmaps were generated to display correlations of omega-3 use and statin use with the radiomic features
- Machine learning models were developed using a sequential floating forward method (SFF) for feature selection with 1000 round resampling and a gradient boost machine (GBM) for optimization
- The machine learning model was trained and then tested for its ability to predict the use of statins or omega-3s using 3-fold cross-validation with 500 round resampling
- Final results of the models' predictability were measured as average ROC-AUC and average precision-recall AUC for the prostate gland and peripheral region for both statin use and omega-3 use


CONCLUSIONS


As the first study to analyze the radiomic feature pattern in relation to statin and omega-3 drug uses in prostate cancer patients, our study illustrated the potential usefulness of the radiomics tool for further exploring these drugs' effects and mechanisms in prostate cancer.


RESULTS

- Heatmaps were generated to show the association between the use of statins or Omega-3s and the radiomic feature pattern, based on the prostate ROI (Figure 2) and the peripheral ROI (Figure 3).
 This offers a holistic and visual representation of the correlations within our dataset.
- For Omega-3 use prediction, a 6-feature radiomics model based on the prostate ROI achieved an average AUC of 0.772 (SD: 0.073) and a 6-feature radiomics model based on the peripheral ROI achieved an average AUC of 0.554 (SD: 0.091). (Figure 4 A & C)
- For statin use prediction, a 4-feature radiomics model based on the prostate ROI achieved an average AUC of 0.731 (SD: 0.085) and a 4-feature radiomics model based on the peripheral ROI achieved an average AUC of 0.704 (SD: 0.090). (Figure 4 B & D)

Statin Usage

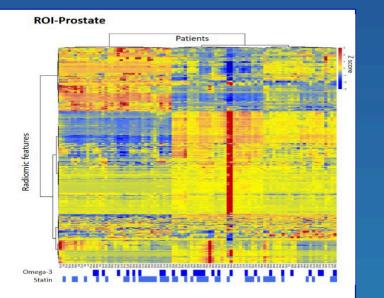
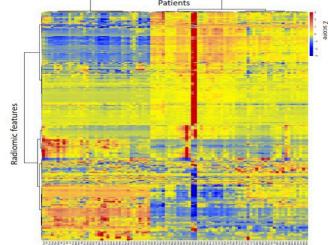



Figure 2: Heatmap that displays radiomic feature correlations between stain and omega-3 use of the prostate gland region of interest

ROI-Peripheral Zone

Figure 3: Heatmap that displays radiomic feature correlations between stain and omega-3 use of the peripheral region of interest

METHODS

Figure 1: Example contours on two patients from our dataset. Prostate ROI in blue and peripheral ROI in red.

REFERENCES

- 1 Siegel et al. "Cancer statistics, 2020", CA, 2020
 2 Rompay et al. "Prostate cancer incidence and mortality among men using statins and non-statin lipid-lowering medications", European Journal of Cancer, 2018
- 3 Gevariya et al. "Omega-3 fatty acids decrease prostate cancer progression associated with an anti-tumor immune response in eugonadal and castrated mice", the Prostate, 2018

CONTACT INFORMATION

Dandan Zheng: dandan.zheng@unmc.edu