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» INTRODUCTION

v’ Parkinson’s disease (PD) is a chronic, heterogenous and
progressive neurodegenerative disease and the 2" most
common neurodegenerative disorder after Alzheimer’s
disease (2-3% of the population >65 years of age) [1,2,3].

v' It is important to identify distinct progression pathways in
PD, for improved understanding of disease and improved
powering of clinical trials of disease modifying therapies.

» AIM

v' To identify distinct disease progression pathways in PD
making use of imaging features and advanced time-series

(longitudinal) clustering algorithms.

» METHODS

v' We_studied 885 PD-subjects derived from longitudinal
datasets (years 0,1,2,4; Parkinson’s Progressive Marker
Initiative), with 980 features, e.g. Movement Disorder
Society’s Unified Parkinson's Disease Rating Scale
(MDS-UPDRS) measures, a range of task/exam
performances, socioeconomic/family histories and
SPECT image features.

v’ Segmentation of regions-of-interest (ROIs; caudate and
putamen) on DaT SPECT images were performed via
MRI images.

v' Radiomic features (RFs) were extracted for each ROI
using our standardized SERA software.

v" We first performed unsupervised clustering to identify
disease subtypes in a given year (3 clusters robustly
identified in another poster, applicable to all years). We
then created 2 longitudinal datasets with same patients
followed longitudinally.

v" 1st longitudinal dataset included 84 patients which had all
features in each year.

v" 2nd dataset consisted of 143 patients (based on year 4)
with some missing data in some years that we filled using
ensemble hybrid machine-learning (majority-voting)
system consisting of 8 feature-selection algorithms
(FSAs), 8 dimensionality-reduction algorithms, and 6
classifiers.
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» METHODS

v' We finally performed longitudinal-clustering of disease progression
pathways, using K-Means Longitudinal Clustering (KMLC), an extension
of standard K-mean clustering. Ray-Turi clustering evaluation method

was used for optimal selection of number of pathway clusters [4.5].

» RESULT

¥" Our analysis revealed significant heterogeneity in disease projection.

v" We identified 7 distinct progression trajectories/clusters from st dataset,
confirmed by analysis of 2nd dataset.

v' The pathways included those with consistent disease escalation (5
pathways, 66% of patients), slow progression (red pathway, 24%), and
slow improvement (yellow pathways, 10 %).

Evaluation criterion value

Fig 1. Fusion of MRI segmentations on SPECT images for radiomics analysis
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Fig 2. Spider plot of
three kinds of features,
non-motor (N), motor
(M) and imaging (I), for
our 3 identified PD sub-
clusters.
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Fig 3. Identified Major Disease Progression Pathways using K Means Longitudinal Clustering

(thick lines provides averaged cluster center values for the identified 7 pathways)
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» INNOVATION & IMPACT

v" In this study, measurements are not restricted to individual features or
cross-section data only, but includes numerous features studied
longitudinally.

v This works moves beyond cross-sectional PD subtyping to longitudinal
disease pathway progression clustering.

» CONCLUSIONS

v Advanced longitudinal missing-data filling and unsupervised-clustering
demonstrated 7 distinct longitudinal clusters, depicting significant
heterogeneity in PD disease progression.

v" As shown, the majority of the patients (66%) would progress to the most
severe subtype (cluster IIT), while 24% had slow progression and 10%
experienced some improvement.

v" As shown, some patients had an improvement in during 5-year following
up.
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