Leveraging machine learning strategies for reduced uncertainty
in small field dosimetry

W. Zhao!, C. Chang', Y. Yang ', L. Xing '" and E. Schueler"
1Department of Radiation Oncology, Stanford University, USA
*To whom correspondence may be addressed. Email: lei@stanford.edu and emil.schueler@stanford.edu

INTRODUCTION

The use of small fields in radiotherapy has increased substantially
since the introduction and growing indications for intensity
modulated radiation therapy and stereotactic body radiation
therapy. However, small field dosimetry is complicated by a number
of factors which are not seen in standard delivery of broad beams.
Furthermore, modern treatment planning systems are not optimized
for small field dose calculations and deviations between calculated
and delivered dose can exceed 10%, which will have a high impact
on the clinical outcome post treatment.
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CONCLUSIONS

The small field output factors were accurately predicted at different field sizes,
independent of jaw and MLGC position. The pRE for predictions of field sizes from
5x5 mm2 to 40x40 mmz2 was less than 0.80%, with an overall mean pRE of
0.15%. independent of contribution from leaf-end transmission. For model
trained using linear model with and without regularization, the overall mean pRE
was increased to 4.23% and 9.93%, respectively. For model training with
nonlinear random forest regression model, data augmentation showed a 10%
improvement in pRE.

We propose a fast and accurate machine learning-based method to generate
small field output factors for routine radiation therapy. With this method, small
field output factors can be accurately generated using previous acquired output
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factors at different linac settings, which negates the need for time consuming
and complicated measurements without affecting the accuracy of the data. The
predictions may serve as input for dose calculation to overcome the limitations of
modern TPSs in calculating dose for small fields, or as a secondary verification
tool for use in the quality assurance process.
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To overcome these issues and avoid the need for complicated and Number of estimators

time-consuming physical measurements, we aim to propose a
machine learning based approach for fast and accurate predictions
of small field output factors to serve as a basis for dose calculations
for increased accuracy and safety of patient treatments.
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Linac output factors at various multi-leaf collimator (MLC) positions,
jaw positions, and with and without contribution from leaf-end
transmission was collected from a Varian TrueBeam equipped with
HD-MLC. The data was collected at a source-to-detector distance
of 100cm at 10 cm depth with MLC defined fields. The datasets
were split into training and testing data and there was no overlap
between these two datasets. We formulated the small field output
factor as an output of random forest regression problem, which was
trained using a set of jaw and MLC settings together with
corresponding output factors. 1200 sets of data were used to
training and 350 datasets were used for testing the nonlinear
regression model. For comparison, the small field output factors at
various settings were also predicted using linear models trained
with and without regularization. The predicted output factors were
compared and evaluated using absolute percentage relative error
(PRE).
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Figure 2. Large deviation between Eclipse calculated and measured output for
small fields.
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Figure 4. Results of
the accuracy
(relative percentage
error, %RE) of the
predicted output
factors using
different machine
learning algorithms.
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Figure 4. Results of
the accuracy
(relative percentage
error, %RE) of the
predicted output
factors at different
training scenarios.
The results suggest
avoiding predictions
when Jaw and MLC
position overlapped
resulted in
reduction of
extreme errors.
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