

Failure Mode and Effects Analysis for PET applications in Radiation Therapy Quality Management

A. Rodrigues¹, J. O'Daniel¹, Y. Mowery¹, FF. Yin¹, Y. Cui¹

¹Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710

INTRODUCTION

TG-100 [1] suggests that Quality Management (QM) programs utilize a risk-assessment based approach utilizing Failure Mode and Effects Analysis (FMEA) rather than a prescriptive approach.

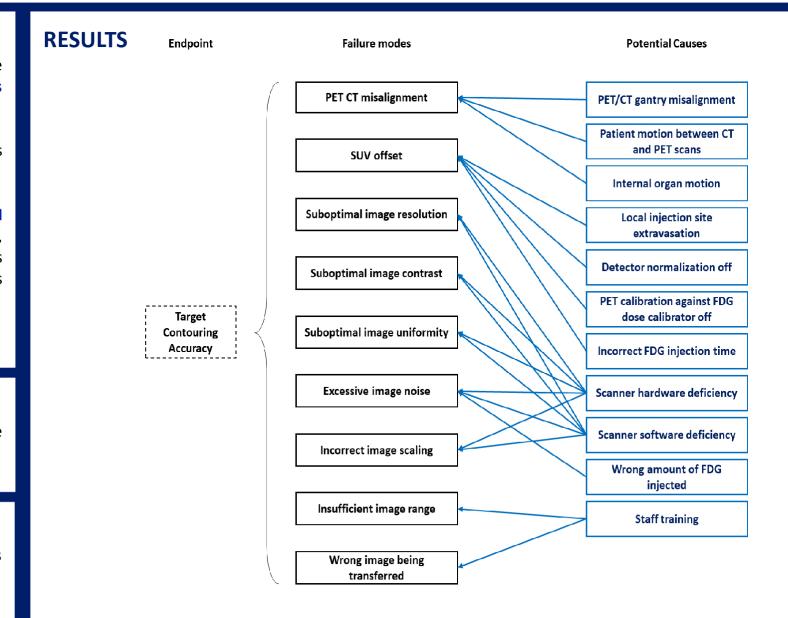
Recently published AAPM Report from TG-174 [2] provides prescriptive recommendations for periodic QA for PET/CT simulators.

We have recently evaluated **our nine years of PET/CT RT QM experience** against the TG-174 recommended tests and tolerances, results of which are presented at this conference [3]. These results showed **very good consistency with the TG-174** recommended tests and rarely failed the tests.

We concluded that our QM could potentially be optimized.

PURPOSE

We investigated a framework for FMEA for PET/CT RT QM in the context of **PET applications in target contouring**.


METHODS

Possible failure modes were identified by two medical physicists with input from a radiation oncologist.

The **severity** (S) of a failure mode was assessed by its impact on contouring accuracy. The occurrence (O) and detectability (D) were derived from analysis of daily and monthly QA, retrospective review of clinical PET/CT images, physicists' experience, expectation of staff performance, and possible causes of each failure mode.

The **Risk Priority Number (RPN)** was calculated from O, S, and D using a 1 - 10 scale utilizing relative importance ranking.

The first stage FMEA assumed no QM. A second stage FMEA reevaluated the scores with our current quality control (QC)/QA, and the remaining high RPN failure modes were identified.

	Stage 1 FMEA - no QA/QC/QM				Stage 2 FMEA - current QA/QC/QM			
Failure Mode	0	S	D	RPN	0	S	D	RPN
PET CT misalignment	7	9	4	252	6	9	3	162
SUV offset	5	6	9	270	3	6	5	90
Suboptimal image resolution	2	7	5	70	2	7	2	28
Suboptimal image contrast	2	7	5	70	2	7	2	28
Suboptimal image uniformity	2	4	7	56	2	4	2	16
Excessive image noise	4	5	7	140	4	5	4	80
Incorrect image scaling	1	8	3	24	1	8	2	16
Insufficient image range	2	8	1	16	2	8	1	16
Wrong image transferred	1	10	1	10	1	10	1	10

CONCLUSIONS

FMEA was able to quantitatively assess the current impact of our PET/CT RT QM.

Failure Modes with largest reduction from 1st to 2nd stage:

- SUV Offset
- PET/CT misalignment

Failure Modes with no reduction from 1st to 2nd stage:

- Wrong image transferred
- Insufficient image range

Future work includes implementation of a potential third stage with **periodic re-evaluation FMEA.**

	tage 1 A/QC/QM		ge 2 ional QA/QC/QM	Stage 3 Proposed QA/QC/QM		
RPN	$_1 = O_1S_1D_1$	RPN ₂ =	O ₂ S ₁ D ₂	$RPN_3 = O_3S_3D_3$		
\mathbf{O}_1 : Quantified from # of times failure mode occurred/didn't occur		O ₂ : Quantified f failure mode oc due to QA/QC/0	curred/didn't	O ₃ : Quantified from # of times failure mode occurred/didn't occur due to QA/QC/QM		
S ₁ : Scored from 2 expert physicists, 1 physician		S ₁ : Scored from physicists, 1 phy		S ₃ : Quantitative metrics to assess severity of failure mode on end point		
D ₁ : Scored from 2 expert physicists, 1 physician		D ₂ : Scored from	QA/QC data	D ₃ : Scored from QA/	QC/QM	
	Occurrence can chan (e.g. due to physics/e Severity stays Detectability n	ngineering work) the same	Severity m	st ranking RPNs ge due to QA/QC/QM	Per Re-evi	

REFERENCES

[1] Huq, M. Saiful, Benedick A. Fraass, Peter B. Dunscombe, John P. Gibbons Jr, Geoffrey S. Ibbott, Arno J. Mundt, Sasa Mutic et al. "The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management." Medical physics 43, no. 7 (2016): 4209-4262

[2] Das, S. K., McGurk, R., Miften, M., Mutic, S., Bowsher, J., Bayouth, J., ... & Xing, L. (2019). Task Group 174 Report: Utilization of [18F] Fluorodeoxyglucose Positron Emission Tomography ([18F] FDG-PET) in Radiation Therapy. Medical physics, 46(10), e706-e725.

[3] <u>PO-GeP-T-708</u>

CONTACT INFORMATION

anna.rodrigues@duke.edu