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INTRODUCTION

Image-guided radiosurgery (IGRS) is a safe and attractive

RESULTS

treatment option for many sites, such as brain, spine and lung, and
especially for lesions that are surgically inaccessible. Current IGRS
is mostly fiducial-free and often relies on the use of image
registration for patient setup and intra-fractional tracking. In our
current clinical practice, the intensity-based image registration
method is inadequate in a few cases, especially when the target
involves multiple vertebral bodies.
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AIM

Accordingly, we aim to develop a novel fiducial-free targeting
strategy using deep learning approach to interpret routine live kV X-
ray images for spinal radiosurgery. Due to the limited access to the
training data, we are also developing a realistic training data
generation scheme for the deep learning model.

kV X-ray source X-ray detector

Delineated GTVY
DRR of the delineated GTV

METHOD

Figure 2. Generation of the simulated kV live images using motion incorporated planning CT images
with geometry consistent with the in-room orthogonal bi-plane X-ray imaging system. For this
purpose, we placed patient planning CT images in the live image geometry, and then introduced a
series of changes (translations/rotations/deformations) in planning CT images to mimic different
gl B /% clinical scenarios. For each of the changes, we generated two DRRs which are consistent with the

. live images acquired using the bi-plane imager. Meanwhile, the DRRs of the delineated GTV were
also generated for each of the changes.
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Figure 4. Examples of
the predicted positions
on the simulated DRRs
and real live images.
The model predicted
target position are
highly consistent with
the corresponding
ground truth positions
that were derived from
the CT simulations for
both detector A (a) and
detector B (b). For the
real live images
acquired using detector
A of the bi-plane image
system, the predicted
target (yellow boxes)
positions match well
with the positions
derived from the CT
simulations and the
spine anatomy for both
fractions (c-d).
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The above (Figure 1) shows the workflow of the proposed deep
learning-based IGRS method. The first step is to incorporate the
motion model to the planning computed tomography (CT) images.
Second, the deformed and translated CT simulations were

projected in the geometry of the live imaging system to generate
digitally reconstructed radiographs (DRRs). Finally, the DRRs
together with their corresponding gross target volume annotations
were used to train a patient-specific model to localize target
position on the real-time live images.

Figure 3. Generation of the annotated DRRs for model training. For each of the simulated live
image and its corresponding GTV-only DRR, we first find the contour and bounding box of the target
in the GTV-only DRR and then attach them to the simulated live image to obtain an annotated
sample.

Table 1. Quantitative evaluation of the predicted results on simulated live images.
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CONCLUSIONS

The deep learning model required approximately one hour of training for each
view angle of the two orthogonally mounted X-ray systems. Following training,
the model identified the spinal tumor on the testing DRR or a live image within
200 ms. The deviations between the target position obtained by deep learning
model and the testing DRRs range from -2.25 mm to 1.48 mm and from -1.10
mm to 1.23 mm for the two X-ray systems. The overall mean absolute targeting
error for the two X-ray systems are 0.66 mm. Target positioning provided by the
trained deep learning model for tracking periodic live images is consistent with
the derived positions from the couch correction.

This study demonstrated that fiducial-free spinal tumor targeting for radiosurgery
is achievable with high accuracy by using a deep learning approach. The
proposed method may be useful for pre-treatment patient setup and real-time
target tracking during treatment delivery. It provides a clinically valuable solution
for routine spinal radiosurgery and could be adapted to other challenging
treatment sites.
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