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Introduction Model Calibration Predicting Outcomes
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* We introduce a new model to investigate effects of RT on the tumor ?6 18] 7 15 \ 151 tumor volumes at the start of RT: black Figure 4. Representative spaghetti plots of tumor volume prediction
micrognvircnment that hypothesizes that each RT dose reduces the tumor carrying E o "V ey dots indicate weekly tumor volumes simulations. 100 prediction simulations for patient 10 including 0—-4 weekly
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Figure 1. A Depiction of the tumor and its microenvironment, showing non-tumor 2 J C Box plots showing parameter 3 2 o1 control and disease-free
components that may be caught by the RT target volume. B-C Tumor growth is n y @ . distributions across all patients. 03 og survival with 0-4 weekly
modeled as logistic growth and the effect of RT is modeled as an instantaneous 0 0 0 _ . — 04 volume measurements
reduction in thge carrging capacity. There are two possible cases: B Case 1: the % 15 30 A 6 PsSI (P8I = Vy/Ky; Le. how close the Initial 0 0 =24 included
: ; ) . Measured Volume (cc) tumor volume is to the carrying capacity) 0 0.5 1 0 0.5 1 :
carrying capacity after a given RT fraction can be greater than the tumor volume (1-Specificity) (1-Specificity)
at the time of that dose, leading to slowed tumor growth or C Case 2: the carrying . = .
capacity after an RT fraction can be less than the tumor volume at the time of that FO recastl ng Plpel ine
RT dose, leading to tumor volume reduction. onclusions

pre-measurement - historical . . . . L 2
e . _ _ SAVIAD — 6 Istorica The model fit data from MCC with a single A value with high accuracy (R? = 0.95).
Methods and Models (historical cohort minus i-th patient) ( estim)ator -distribution Model analysis revealed that growth rate is not patient specific.
Logistic growth of tumor volume: 5 = This model fit the MDACC data with high accuracy (R2 = 0.98), demonstrating
N _ v (1 - %) IL(-AWAU &5

transferability of A.
= The forecasting method predicts patient-specific outcomes with sensitivity and
o A is tumor growth rate [day'], V is tumor

specificity with the inclusion of just a few on-treatment volume measurements.

Future Directions

volume [cc], measurement
. . . (i-th patient)
~ Kis tumor carrying capacity [cc]. clinical _ = The current patient data is heterogenous. Ongoing trial NCT03656133 at MCC wil
Instantaneous reduction in carrying capacity: Mmeasure estimated 1 provide data from a homogenous cohort with controlled treatment conditions,
’ Weig hted allowing for rigorous analysis of the parameters and predictive power of the models.
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Kpost rr = Kpre rr — 8 - Kpre gy, 8 is the carrying capacity combination

reduction fraction that ranges
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