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INTRODUCTION

Sculpted dose distributions characteristic of VMAT often require extensive fluence
modulation and, thus, precise control over machine parameters is essential for accurate
treatment delivery. In radiotherapy, the accurate delivery of radiation through the minimization
of treatment errors is an important goal. By minimizing machine delivery errors, the dosimetric
errors are also reduced. If machine errors can be predicted, then so too could the dosimetric
errors. Predictive models may facilitate the generation of treatment plans robust to errors in
gantry and MLC leaf positions, and, so doing, will aid in the assessment and prevention of
dosimetric errors. The aim of this study is to demonstrate the utility of an artificial neural network
(ANN) to predict MLC and gantry position errors occurring during VMAT delivery.

METHOD

Neural Network Construction

Errors in gantry and MLC leaf position were predicted using two separate ANN models: a
gantry model composed of five dense hidden layers and an MLC model of three; both models
utilizing 100 nodes/layer. The model was created using an in-house program coded in Python.
The Rectified Linear Unit (ReLU) was used as the activation function and RMSProp was used
for optimization. Data from 18 VMAT trajectory files representing various treatment sites were
used to train and validate (90%,/10%) the ANN model with 10 additional files serving as the
test set, two of which were SBRT plans.

MLC and Gantry Model Features

Gantry and MLC leaf positions were predicted based on a variety of features. For both
models, position, velocity, and acceleration were used. The trajectory file lists data in
timepoints every 20ms apart. The number of this timepoint rather than the time itself was
used, as it was only necessary to specify the relative time within the treatment duration. In
order to incorporate the effects of past and future motion states, time point data (position,
velocity, and acceleration) from +10 and 3 timepoints, for MLC and gantry respectively, were
added to the feature vector.

MLC Model Specific Features

To describe the high complexity of MLC motion, the ANN was trained on additional MLC
specific features. A 0 or 1 flag specified the size of the MLC (5mm or 10mm width), the
direction the MLC is moving (toward or away from center), whether the MLC was moving or at
rest, and whether the MLC was on carriage A or B. Each MLC was numbered from 1-60,
specifying where it is located on the carriage relative to the other MLCs. Lastly, all previously
mentioned features (except for timepoints) were added to the feature vector for the two
neighboring leaves.

MLC Model Features
Velocity
MLC Size

MLC Movement

Neighbor MLCs

Gantry Model Features

Velocity

43 Timepoints

Position Acceleration

Treatment Timepoint
MLC Number
+10 Time points

Carriage
MLC Direction

Position Acceleration

Treatment Timepoint

Table 1: Summary of MLC and gantry features used in the training of the ANN models.

Model Assessment

Model error was assessed by comparing predicted values with values recorded in the
trajectory files. This error was compared with the error resulting from differences between
treatment plan-derived and machine-reported component positioning.
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RESULTS

Model Performance

Across the test set, the average root-mean-square error
(RMSE) for predicting MLC positional errors was 0.006 mm (0.004-
0.012 mm) using the ANN model compared to 0.032 mm (0.014-
0.038 mm) using treatment planning values. The average RMSE
for predicting gantry positional errors was 0.017° (0.008-
0.026° ) using the model compared to 0.048° (0.038-0.061° )
with the plan.

Overall, the positional errors were small. The largest
positional error seen in the MLC positions was ~0.08mm for the
plan and ~0.02 for the prediction of non-SBRT plans. For the
gantry, the largest error observed was ~0.2° for the plan and
~0.07° for the prediction.

MLC Model Observations

It was found that the planned positions generally lagged
behind the actual positions during treatment as shown by the
asymmetric, bi-modal distribution in Figure 1A. The spread of the
planned positional errors tended to be large for the standard
VMAT cases.

The predicted positional error spread was typically symmetric
around zero, alluding to the accurate yet stochastic nature of the
prediction. From Figure 3A, this pattern can be seen in the
majority of typical VMAT cases.

Gantry Model Observations

As with the MLCs, the planned gantry positions lagged behind
the actual treated positions, although, in this case, the
distribution was systematically shifted. In Figures 1B and 2B, the
planned positional error peak (blue) is negatively shifted from
zero.

Again, the predicted positional errors were symmetric around
zero. However, the ahility of both the plan and the prediction in
representing the actual gantry positions was far less consistent
than for MLC positions. Figure 3B shows that the spread of the
predicted gantry positions appear to be a function of the spread
of the planned gantry positions.

SBRT Prediction

The MLC model was less accurate in predicting the MLC
position error for the two SBRT plans that were included in the
test set (pt. 3 and pt. 8). This is visualized in Figure 2A, in which
the prediction peak is slightly shifted off zero and the spread of
the values is larger. It can also be noted that the planned MLC
positions for these two plans was a better representation of the
actual positions than in the standard VMAT plans. These
observations are seen with patient 8 to a larger degree. The
performance of the gantry model prediction for these two
patients was consistent with the other eight.
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Figure 1: MLC and gantry positional errors for a single standard VMAT patient plan (Pt. 10 in Figure 4). The errors are relative to the direction of
motion. Planned: Difference between treatment plan-derived and machine-reported component positioning. Predicted: Difference between

ANN model predicted and machine-reported component positioning.
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Figure 2: MLC and gantry positional errors for a single SBRT patient plan (Pt. 3 in Figure 4). The errors are relative to the direction of motion.
Planned: Difference between treatment plan-derived and machine-reported component positioning. Predicted: Difference between ANN model

predicted and machine-reported component positioning.
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Figure 3: MLC and gantry positional errors for 10 unigue patient plans. The errors are relative to the direction of motion. Planned: Difference
between treatment plan-derived and machine-reported component positioning. Predicted: Difference between ANN medel predicted and

machine-reported component positioning.

N
=7 VIRTUAL
JOINT AAPM | COMP MEETING

DISCUSSION

Both the MLC and gantry models created in this study have shown to accurately predict
positional errors during VMAT delivery. This model provides valuable information that can be
used to evaluate the robustness of a VMAT plan, enabling informed decision making before the
initiation of the treatment course. This information, available directly from the treatment plan,
can also be used to provide a more meaningful approach to patient-specific and machine quality
assurance.

Model Improvements

While highly accurate, the prediction was not a perfect representation of the actual VMAT
delivery due to the stochastic nature of the predictive model. The model could potentially be
improved further by investigating different neural network architectures and hyperparameters.
This would include changing the number of hidden layers and nodes/layer, and using different
activation functions and optimizers.

Typically, adding more training data would increase the accuracy of an ANN model. In this
case, adding additional trajectory file data for standard VMAT plans, past the 18 used in this
study, did not improve the accuracy of the MLC model. On the other hand, due to there being
less gantry data per trajectory file compared to MLC data, the gantry model could possibly be
improved with additional data.

None of the 18 trajectory files used to train the models included SBRT plans. While SBRT
plans are a specific type of VMAT plan, they have unique characteristics that make them different.
The inclusion of SBRT plans to the training data could improve the predictive accuracy of the MLC
model for this technigque. However, this could have the effect of diminishing the predictive
accuracy for non-SBRT plans. Another option is to create separate non-SBRT and SBRT models
which only use training data from their respective techniques.

Future Direction

Investigation into the dosimetric impact of the predicted positions compared to the planned
positions is the next logical step since the main reason for preventing machine delivery errors is
to prevent dosimetric errors.

Another avenue of investigation involves the creation of predictive models for other
radiotherapy delivery equipment. Different machines, across multiple vendors, incorporate
unique designs into their equipment that have varying magnitudes of delivery error. These
machines would require their own models in order to achieve the optimal predictive accuracy.

CONCLUSIONS

MLC and gantry positions reported by trajectory files were closer to the positions predicted
by our models than to those expected according to the plan. Predicting MLC and gantry positions
allow for preemptive assessment of treatment plan deliverahility. This approach may be used to
develop robust treatment plans as well as to develop meaningful plan-specific and periodic
machine quality assurance assessments.
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