“ S g

—
- ~ 3
¢
7

S vl '
o &‘AV onstraints ApprOX|mat|n for Deep Learning in MAIA

IR ek N ’* '°n Therapy ¥ Laboratory
| 2020 %,; 53 \/lRTUAL afe M \ , Mu-Han Lin, Andrew Godley, r Jiang, Dan Nguyen

; JUINTAAPM?CUMP MEETING .‘ 8) W

EASTERN TIME [GMT-4] Radiation Oncology

. /"’ﬁ-.

RESULTS 100

INTRODUCTION DEEP LEARNING

ARCHITECTURE

Oral cavity mask

Purpose: Many publications have shown
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therapy treatment. Our previous work
showed that for prostate and head and neck
patients, plans could be generated within 5
percent of clinically delivered plans.
Furthermore, we developed a DVH based

of neural networks. Physicians desire more control over the
treatment planning process to implement patient specific treatment
protocols. Although our in house dose predictor is capable of
creating clinically realistic plans that represent the average
accepted and treated plan, to this point we were unable to fine tune
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Figure 2: Boxplot showing the percentage of voxels in the
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patient PTV plan that meet the hotspot constraint. Qur hard
constraint dose prediction model increased the conformity
to the dose index and reduced the variabilityin PTV plans
across all the patients.
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OWENER THETE-15 NO MELNOCOI0Ey avaliaie network that was trained on a large dataset of clinically accepted z 60
to enforce hard constraints on a trained DATA AND TRAINING plans. We selected two hard constraints to test the method. The g ! ot Dose
deep learning model. Enforcing constraints first was to remove hotspots in the PTV greater than 103% of the Figure 1: Axial slice of a patient in this study. The top left shows the § 40 B s s oo et
clinically delivered dose, the top right shows the structure outline of the 4 .

« The model was trained on 300
patients treated in our clinic

« 210 train, 60 val, 30 test

« 30 different H&N treatment
sites

« 1t0 5PTV levels

such as the maximum allowable hot-spot or
maximum dose allowed to a specific organ
at risk were not possible. We have
developed a novel training method that can
incorporate multiple hard constraints with
user specified priority. We believe this

prescription dose. The second was to limit the dose above 25 Gy to oral cavity, the bottoms left shows our current baseline prediction model Figure 3: Boxplot showing the percentage of voxels in the
the oral cavity. Although these constraints may result in unrealistic and the bottom right shows our dose prediction after implementing the  patient oral cavity that are less than the 25 Gy dose

; ; : hard constraint custom loss function. constraint, Our hard constraint dose prediction model
plan§, further tuning pf this method WI|.| allow us to control the dose oushed the oral cavity dose to met the constraint while not
prediction model. This methodology will also allow us to create modifying the dose distribution to other structures.
patient specific dose predictions that meet physician goals while

still mlmlcklng the Clinica”y delivered planS. 1.0,QVH: Solid = Hard constraint dose prediction, dashed = Baseline dose prediction
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learning based treatment plan creation. 72 Gy) constraint dose predictor was able to push the dose distribution Aebetatlnd
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towards the enforced goal. Figure 1 shows an axial slice for a
patient which was treated with an oral sparing treatment plan. This
clearly shows the dose to the oral cavity was reduced from our
baseline dose prediction model and more closely matches the
delivered clinical dose distribution. Figure 2 and 3 show boxplots of
the percent of voxels that are compliant with the hard constraint for :
both the PTV and the oral cavity. *% 10 20 30 40 50
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U-net
Input:
clinical OAR contours
PTV prescription scheme
Output:
3D dose distribution
Loss function:
Custom loss function

METHOD

Our robust in house model based on a
Hierarchically Densely Connected U-net
was used as the foundational for this work.
A custom loss function was written to
approximate a hard dose constraint in the
training process. This loss function allows
the user to select the desired structure and
assign a priority to the hard constraint. The
model was then trained, validated and
tested on a patient dataset of 300 VMAT

head and neck patient plans.
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Figure 4: DVH for a patient in the testing data set. The compliance of the hard constraint
for both the PTV (dose > 103%) and oral cavity (dose < 25 Gy) was increased when
adding the custom loss function to the prediction model.
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CONCLUSIONS

This methodology will allows for our in-house deep learning models to be modified to
meet specific physician and patient specific treatment goals, while still harnessing the
power, speed and accuracy of a deep learning based dose distribution prediction.
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