

Quantifying the Effects of Radiation TherapyFractionation Scheme on Dose Response Modelling

Authors, E.M. WALLAT¹, A.E. WUSCHNER¹, M.J. FLAKUS¹, W. SHAO², J.M. REINHARDT², G.E. CHRISTENSEN², J.E. BAYOUTH¹

- 1. University of Wisconsin-Madison, Madison, WI
- 2. University of Iowa, Iowa City, IA

INTRODUCTION

- Previous works have shown regions of high-functioning lung tissue are more susceptible to radiation damage ¹
- In order to create quality functional-avoidance treatment plans, accurate prediction of post-radiation therapy (RT) ventilation damage is necessary
- Dose response models have been developed to predict post-RT damage, but did not consider the impact of fractionation scheme/ treatment volume ²

AIM

The purpose of this work was to quantify the effects of radiation therapy fractionation scheme on modelling post-RT ventilation changes due to radiation damage.

RESULTS

- The gamma pass rate, accuracy, and TPR for each of the models are presented in the table
 - These values across all models were similar with the exception of the TPR for the SBRT-only model
 - This may be due to the relatively smaller treatment volumes used in SBRT compared to standard fractionation
- The figures show the actual and predicted post-RT ventilation map for each of the models
- All three of the predicted maps shown tend to predict less damage (or less decrease) in lung ventilation compared to the actual post-RT ventilation map

Dose distribution overlaid on reference phase of 4DCT

Actual post-RT ventilation map

SBRT-only model, predicted post-RT ventilation map

Standard-fractionation-only model, predicted post-RT ventilation map

METHOD

- 30 standard fractionation subjects & 23 hypo-fractionated stereotactic body radiation therapy (SBRT) subjects
- Three dose response models were created using 4DCTderived ventilation maps using the following subjects:
- 18 subjects from each fractionation scheme
- 18 SBRT subjects
- 23 standard fractionation subjects
- Polynomial models were fit to each of the three different groups of subjects with independent variables being the pre-RT Jacobian values and dose to each voxel
- Gamma analysis was performed on each model for validation using the remaining subjects in each group
- Additionally, true positive rate (TPR) and accuracy were also quantified

Table summarizing the accuracy, gamma pass rate, and TPR of each dose response model

	Model Type		
	SBRT	SFX	Mix
Accuracy	73.5%	77.8%	77.5%
Gamma	54.9%	56.1%	55.9%
TPR	3.4%	30.9%	30.0%

Mixed model, predicted post-RT ventilation map

CONCLUSIONS

- It was shown there was **no significant difference** between predictive dose response models using subjects from different fractionation schemes
- This result suggests there may be no need for multiple dose response models for different fractionation schemes
- Each model predicted less damage than what truly occurred suggesting there are additional damage mechanisms that must be included in the model

ACKNOWLEDGEMENTS

Funded by NCI Grant NCT02843568

REFERENCES

- Patton TJ, Gerard SE, Shao W, Christensen GE, Reinhardt JM, Bayouth JE. Quantifying ventilation change due to radiation therapy using 4DCT Jacobian calculations. Med Phys. 2019;45:4483–4492.
- Wallat, E.M., Flakus, M.J., Wuschner, A.E., Shao, W., Christensen, G.E., Reinhardt, J.M., Baschnagel, A.M. and Bayouth, J.E. (2020), Modeling the impact of out-of-phase ventilation on normal lung tissue response to radiation dose. Med. Phys.. doi:10.1002/mp.14146

CONTACT INFORMATION

wallat@wisc.edu