

Deep-learning dose prediction as first step toward real-time adaptive replanning

Laura Buchanan¹, Zhaocai Chen², Wei Zhang², Qichao Zhou², Diane Schott¹, X. Allen Li¹

¹Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI ²Manteia Medical Technologies, Brookfield, WI

Ground Truth

INTRODUCTION

Real-time adaptive radiotherapy therapy (RT-ART), introduced to account for severe intrafraction variations based on real-time images during radiation therapy delivery, is difficult with the current treatment planning technology. As a first step toward RT-ART, we are developing a machine learning model that rapidly predicts dose based on a segmented image set. It is our end goal to incorporate deeplearning dose prediction into a larger planning scheme to facilitate an automatic end-to-end replanning workflow.

AIM

This work aims to develop a machine learning model that can rapidly predict dose based on a segmented image set and be generalized to any tumor site thereby facilitating the first step towards real-time adaptive replanning.

METHOD

- Training dataset consists of segmented CT image slices from pancreatic cancer patients (46) paired with ground truth dose distributions obtained from clinical plans
- 128 2D transverse slices per patient for total of 5,888 training data
- Prescription of 50.4 Gy to the PTV
- PTV, liver, stomach, large bowel, small bowel, duodenum, and spinal cord were segmented by trained dosimetrists and physicians
- The network architecture is a 2D conditional generative adversarial network (Pix2pix) and consists of a U-Net generator followed by a binary discriminator.
- Model was tested on 1 held-out patient with 128 slices

RESULTS

Slice 47

Slice 40

Segmented CT

Prediction

Ground Truth - Prediction

Slice 70

Figure 1: Representative slice by slice comparison of dose prediction results for test cases.

CONCLUSIONS

- The maximum percent difference between ground truth and predicted dose is 41% (slice 40), 8% (slices 47 and 55), and 17% (slice 70)
- Dose difference between ground truth and prediction varies from slice to slice and is greatest at the "top" and "bottom" slices
- Slice by slice variation is likely a result of training pixel-by- pixel instead voxel-by-voxel
- Future work includes extending the model to 3D and testing the network architecture on multiple different cancer sites

ACKNOWLEDGEMENTS

This work is partially supported by MCW Fotsch Foundation and Manteia Med.

REFERENCES

- 1. Isola, Phillip & Zhu, Jun-Yan & Zhou, Tinghui & Efros, Alexei. (2016). Image-to-Image Translation with Conditional Adversarial Networks.
- 2. Mahmood, Rafid & Babier, Aaron & Mcniven, Andrea & Diamant, Adam & Chan, Timothy. (2018). Automated Treatment Planning in Radiation Therapy using Generative Adversarial Networks.
- 3. Nguyen, Dan & Jia, Xun & Sher, David & Lin, Mu-Han & Iqbal, Zohaib & Liu, Hui & Jiang, Shucui. (2018). Three-Dimensional Radiotherapy Dose Prediction on Head and Neck Cancer Patients with a Hierarchically Densely Connected U-net Deep Learning Architecture.

CONTACT INFORMATION

Laura Buchanan: Ibuchanan@mcw.edu