

Feasibility of an automated clinical workflow for assessing risk organ doses in lung re-irradiation patients using EQD2

David Aramburu Núñez Ph. D*., Annemarie Shepherd MD*, Xingzhe Li MD*, Abraham Wu MD*, Charles Simone MD*, Andreas Rimner MD*, Andrew Jackson, Ph.D.*, Lakshmi Santanam, Ph.D.* and Ellen Yorke Ph. D*.

*Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA

Purpose

To assess cumulative organ doses after re-irradiations in SBRT lung patients using an automated clinical workflow in MIM that calculates both physical dose sum and EQD2 sum.

Methods

Ten patient datasets, (CT, RTDOSE, RTSTRUCT, REG) from treatment courses 1 and 2, were exported from Eclipse to MIM. All patients had received one hypofractionated lung SBRT treatment plan at each course (prescriptions ranging from 7.5x8 - 18x3 (Gy x fx)). Rigid spine registration between Course 1 and Course 2 CTs (CT1 and CT2) was performed to transfer RTdose and RTstructures from CT1 to the reference set, CT2. Esophagus and Lungs were chosen for proof-ofprinciple, a union of the two esophagus structures was created as planning risk volume (PRVA MIM automated clinical workflow was created, calculating and displaying voxel-by-voxel physical dose-sum (PhyDose) and EQD2 dose-sum ($\alpha/\beta = 3$ for OARs). Dmax, and D5cc for esophagus_CT1, esophagus_CT2 esophagus_PRV, and mean doses and V2oGy for lungs from PhyDose and EQD2 dose-sums were compared. DICE similarity coefficients were calculated between Course 1 and Course 2 esophaguses displayed on CT2.

Results

Due to a low DICE between CT1 and CT2 esophaguses (0.5 \pm 0.2), a PRV structure was created. The median (range) Dmax EQD2 for esophagus_PRV is 23.3 (12.2 - 97.1 Gy) and Dmax PhyDose 19.8 (11.8 - 38.8 Gy). Median (range) esophagus_PRV D5cc EQD2 is 12.4 (7.7 - 32.1 Gy) and D5cc PhyDose 13.1 (8.4 -21.1 Gy). Median (range) V2oGy EQD2 for lungs_CT2 is 12.8 (5.7 -24.4 %) and V2oGy PhyDose 10.0 (4.4 -20.5 %).

Figure 1. Boxplots representing Dmax and D5cc for EQD2 and the physical dose of the plan sum for esophagus_PRV.

Table 1. Dose scheme per course of SBRT treatment in all patients analyzed.

	Course 1		Course 2	
	Dose per		Dose per	
Patient	fraction	#	fraction	#
(#)	(Gy)	fractions	(Gy)	fractions
1	7.5	8	18	3
2	9	5	12	4
3	10	5	18	3
4	10	5	18	3
5	18	3	12	4
6	12	4	10	5
7	10	5	18	3
8	12	4	10	5
9	12	4	10	5
10	10	5	12	4

Figure 2. Boxplots representing V20Gy EQD2 and V20Gy physical dose of the plan sum for Lungs_CT2

Conclusion

EQD2-isodoses curves can provide more intuitive radiobiological information than physical dose-sum. A similar workflow can be used for other organs. A major limitation is that accurately including anatomical changes between courses will require deformable dose accumulation to confidently establish this automated workflow in the clinic.