

Investigation of the potential for dosimetric accuracy improvements when utilizing the Gammex 1467 Advanced Electron Density Phantom for CT number conversions of high-density biologic material

A. Plypoo¹, E. Lobb¹, K. Ruchala²

¹Ascension St. Elizabeth Hospital, Appleton, WI

²Gammex Inc., Middleton, WI

INTRODUCTION

The accuracy of the CT numbers to relative electron density (CT-RED) curve in the treatment planning system (TPS) is essential to assure accurate heterogeneity corrections. In this study, the dosimetric effect of generating CT-RED calibrations from two commercially available phantoms which handle high-density data points in different ways were compared. One phantom (Gammex 1467) utilized tissue-mimicking materials for data points near bone and the other phantom (Catphan 504) utilized Teflon as a proxy for bony tissue. The goal of the study was to determine if using tissue-mimicking materials results in an appreciable improvement in dose calculation accuracy within and around bony anatomy compared to proxy materials.

PURPOSE

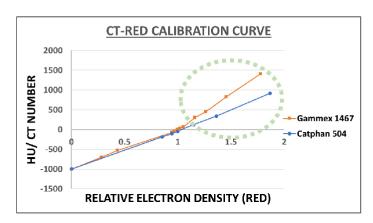
To investigate the dosimetric effect of using tissue-mimicking bone-like materials with the Gammex 1467 Advanced Electron Density Phantom versus proxy Teflon materials with the Catphan 504.

METHOD

First, CT-RED curves were generated for each phantom in the Eclipse 15.5 treatment planning system:

Phantoms:

Part I: Impact of CT-RED curves on delivered dose accuracy


- 1. Create 12 TPS plans irradiating a heterogenous phantom with 2cm of bone-equivalent material for each CT-RED curve
- Field Size: 5x5, 10x10, 20x20 cm²
- Energy: 6MV, 10MV, 10MVFFF, 15MV
- 2. Deliver the plans to the phantom, measuring absolute dose beyond the bone slab with a Farmer ionization chamber
- 3. Evaluate dosimetric agreement between measurement and TPS as a function of CT-RED curve

Part II: Impact of CT-RED curves on clinical treatment plans

- 1. Calculate dose on 10 retrospective patient plans treating in or adjacent to bony anatomy
- Compute using identical field parameters using CT-RED curve generated from each phantom
- 2. Evaluate dosimetric parameters for each plan:
- D_{MEAN} and D_{MAX} for target volume, bone tissue, and OARs
- DVH and isodose comparisons (hot spots/cold spots)

RESULTS

- · Gammex 1467 CT-RED curve yields higher HU values within the bony region.
- Differences of up to 595 HU are seen in the bone region of the CT-RED curve.
- Catphan 504 Teflon has density similar to bone, but with lower-Z, resulting in fewer photoelectric interactions at CT energies, resulting in lower CT number.

Figure 1: Comparison between CT-RED calibration curves for both phantoms. The green circled area represents the bony tissue portion of the curve, where differences in phantom construction have the greatest effect.

 Results show 2.5% better TPS dose agreement with the delivered dose when utilizing the Gammex 1467 CT-RED curve through bony material.

Energy	Field Sizes (cm²)	CATPHAN 504 CT-RED CURVE	GAMMEX 1467 CT-RED CURVE	
6MV	5x5	-5.8%	-2.3%	
	10x10	-4.4%	-1.6%	
	20x20	-2.6%	0.0%	
	Average	-4.3%	-1.3%	
10MV	5x5	-3.9%	-1.6%	
	10x10	-3.3%	-1.5%	
	20x20	-2.4%	-0.4%	
	Average	-3.2%	-1.2%	
10FFFMV	5x5	-4.1%	-1.4%	
	10x10	-3.2%	-0.9%	
	20x20	-2.4%	-0.4%	
	Average	-3.2%	-0.9%	
15MV	5x5	-3.3%	-1.0%	
	10x10	-5.0%	-1.4%	
	20x20	-2.3%	-0.8%	
	Average	-3.5%	-1.1%	
TOTAL DIFFERENCE BETWEEN PLANNED AND DELIVERED MEASUREMENTS:		-3.6%	-1.1%	

Table 1: Percentage difference between the TPS calculated dose and the dose measured in the heterogenous phantom containing 2cm bone-equivalent material.

- D_{MAX} for target, bone, and OARs was underestimated by up to 2.6% using Catphan 504 CT-RED curve VS Gammex 1467 CT-RED curve.
- Average and maximum target, bone, and OAR D_{MEAN} underestimation ranges 0.5 -1.3% and 1.2 - 2.3%, respectively, using Catphan 504 curve VS Gammex 1467 curve.

DOSE DISCEPENCIES (UNDERESTIMATION) IN HIGH DENSITY PLANS WHEN USING CATPHAN 504 CT-RED CURVE vs USING GAMMEX 1467 CT-RED CURVE						
STRUCTURE	MIN %	MAX %	MEAN %	SD %		
Target D _{MEAN}	0.4%	2.3%	1.3%	0.6%		
Target D _{MAX}	0.2%	2.0%	1.2%	0.6%		
Bone D _{MEAN}	0.1%	1.2%	0.6%	0.5%		
Bone D _{MAX}	-0.4%	2.3%	1.1%	0.7%		
OARs D _{MEAN}	0.0%	1.3%	0.5%	0.3%		
OARs D _{MAX}	0.0%	2.6%	1.1%	0.7%		

Table 2: Structures dose percentage difference between the Gammex clinical patient plans and the Catphan clinical patient plans.

Clinical Example: Spine Plan

- Dose to the area of high density is underestimated with Catphan 504 CT-RED curve as shown in Figure 2.
- Plan calculated with Catphan 504 CT-RED resulted in lower PTV, Bones, OAR doses compared to same plan recalculated using the Gammex 1467 CT-RED curve as shown in Figure 3.

Figure 2: Isodose images of one patient's T-spine plan optimized using the Catphan 504 CT-RED curve and recalculated using the Gammex 1467 CT-RED curve.

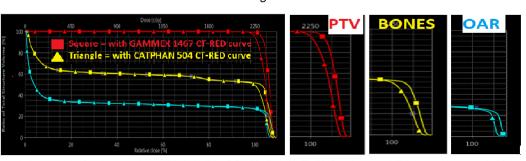


Figure 3: A patient's spinal plan DVH depicting the differences between the doses to the PTV, Bones (in and surrounding the PTV), and the OAR (spinal cord)

CONCLUSIONS

- This study investigated how the choice of tissue-mimicking vs. proxy bony materials in a CT density phantom can impact the resulting CT-RED curves and the associated dosimetric effect
- CT density phantoms such as the Gammex 1467 which use tissue-mimicking materials for bony data points result in higher HU values in the bony region compared to phantoms such as the Catphan 504 which use proxy materials
- Dose calculations through bony materials using tissuemimicking CT-RED curves agree with measured dose approximately 2.5% better compared to proxy curves
- Clinical treatment plans involving bony targets or using beams which traverse significant bony tissue can see underestimated D_{MAX} and D_{MEAN} for target volumes, bony tissue, and adjacent OARs up to 2.6% and 2.3%, respectively when Teflon is used as a proxy for bony tissue in the CT-RED curve.

REFERENCES

Koniarova, Irena. (2019). Inter-comparison of phantoms for CT numbers to relative electron density (RED)/physical density calibration and influence to dose calculation in TPS. Journal of Physics: Conference Series. 1248. 10.1088/1742-6596/1248/1/012046.

Inness, E.K. et al. The dependence of computed tomography number to relative electron density conversion on phantom geometry and its impact on planned dose. *Australas Phys Eng Sci Med* **37**, 385–391 (2014).

Pemler P. et al. Evaluation of the electron density phantom CIRS Model 62. *Z Med Phys.* 2001;11(1):25-32.

ACKNOWLEDGEMENTS

Gammex, Inc. for supplying the Gammex 1467 Advanced Electron Density Phantom

CONTACTS

- (1) Ahpa Plypoo, MS, CMD, DABR, Ahpa.Plypoo@ascension.org
- (2) Eric Lobb, MS, CMD, DABR, Eric.lobb1@ascemsion.org
- (3) Kenneth Ruchala, PhD, DABR, Kennethruchala@sunnuclear.com