

Duke University Enhancement of SRS patient QA via 3D dose School of Medicine reconstruction from multiple 2D planar measurements

O. Fasina¹, J. Duan¹, F. Yin¹, and G. Cui¹

1Department of Radiation Oncology, Duke University Medical Center, Durham, NC

INTRODUCTION

- Linac based VMAT technique has been used to generate conformal plans for the treatment of brain metastases in stereotactic radiosurgery (SRS).
- To ensure safe and accurate treatment, pretreatment verification plans are measured and compared with those calculated by the treatment planning system (TPS).
- Sun Nuclear SRS MapCHECK is a high spatial-resolution 2D detector array for SRS QA, but limited to 2D planar dose comparison.
- This study enhanced SRS patient QA by expanding the dose comparisons to: a) more 2D planar doses; and b) 3D dose and 2D slice extraction.

METHOD

- 2D dose distribution measured from SRS MapCHECK detector (2.47 mm spacing) with StereoPHAN at 0°, 30°, 45°, 60°, 90° and 120°.
- Bezier interpolation algorithm interpolated all angles between 0°, 45°, 90°, and 135° planes to achieve 2D dose for
- Validation performed by procuring pixel by pixel percent difference between measured and interpolated 30°, 60°, and 120° planes in the gradient dose (40 - 80% of max dose) and high dose (> 80% of max dose) regions.
- Verification performed by procuring pixel by pixel percent difference between TPS and interpolated 30°, 60°, and 120° planes in the gradient dose (40 - 80% of max dose) and high dose (> 80% of max dose) regions.
- Algorithm applied to patient data: 30°, 60°, 120°, and central axis axial slice generated from interpolation 3D dose vs calculated TPS dose using mean dose and 2D gamma analysis (3%/1mm passing criteria).

Figure 1: SRSMapCHECK detector and StereoPHAN phantom

RESULTS

Figure 2: Interpolated vs TPS Regional Percent Difference

Validation - Regional %difference

Figure 3: Planar 60° Measured vs Interpolation and TPS vs Interpolation

Validation/Verification - Qualitative Comparison 60°

Patient Application

Regional Average Pixel Percent Difference

Verification - Mean Percent Difference						
	Low Dose	Gradient	High Dose			
30°	1.63%	4.14%	2.13%			
60°	1.75%	5.64%	2.54%			
120°	2.40%	5.63%	2.42%			

Interpolated vs Measured

Interpolated vs TPS

Validation - Mean Percent Difference				
	Low Dose	Gradient	High Dose	
30°	1.36%	3.55%	2.60%	
60°	1.44%	4.94%	2.71%	
120°	1.94%	4.93%	2.55%	

TPS Axial slice Interpolated Axial Slice

2D Planar Dose Comparison					
	Mean Dose (TPS) cGy	Mean Dose (Bezier) (cGy)	2D Gamma(3%/2mm)		
30	320	325	96%		
60	292	308	94%		
120	283	295	96%		
CAX	819	726	N/A		

CONCLUSIONS

- Validation and verification mean pixel percent differences and dose distributions demonstrated feasibility of using the Bezier algorithm to obtain 2D planar dose at any angle.
- Extraction of Central Axis Axial slice from 3D interpolated dose reconstruction showed comparable dose distribution; however, the average dose mismatch between the reconstructed and TPS dose exploits inherent discrepancies from 3D reconstruction algorithm.
- The gradient dose region (40 -80% of max dose) was where the algorithm had limitations, as shown by 2D gamma analysis and Regional % difference (see 2D gamma below.)
- 3D gamma analysis had been performed using the same patient with the following criteria: global gamma, 4%/4mm. And 3%/3mm. The pass rates in the high dose region were 92% and 85%, respectively.

FUTURE WORK

We could look at 3D gamma in the high dose region to enhance QA– this is the region where the 3D interpolation is the most accurate and clinically significant; this can provide volumetric QA information.

Figure 4: 2D Gamma 60°: Measured vs TPS and Interpolated vs TPS

- NOTE: There is a conspicuous discrepancy between the two gamma results in the gradient region
- NOTE: A pixel passes the gamma test if it is below 1.

CONTACT INFORMATION

Oluwadamilola.fasina@duke.edu (334)-707-2585