THE UNIVERSITY OF TEXAS

MDAnderson
LancerCenter

Guillaume Cazoulat!, Brian M. Anderson', Molly M. McCulloch?, Dalia Elganainy2, Mohamed Zaid?, Peter C. Park2, Eugene J. Koay?, and Kristy K. Brock'

Making Cancer History”

INTRODUCTION

Objective assessment of Deformable Image Registration (DIR) often
relies on ground truth anatomical displacements established by
manual identification of anatomical landmarks in the images.

However, manually (or semi-automatically) picking such landmarks is
a process known to be extremely time expensive and is generally
reserved for the characterization of DIR uncertainties on small
datasets.

While DIR solutions are nowadays available in most treatment
planning systems, there is still a need for tools to automatically assess
DIR accuracy and detect possible failure.

AIM

In many anatomical localizations, easily identifiable anatomical
features correspond to vessel bifurcations which can be detected
using image processing techniques. The goal of this study was to
propose a workflow to automatically detect corresponding vessel
bifurcations in pairs of lung or liver CT scans and to assess their use
for the computation of Target Registration Errors (TRE).

MATERIALS AND METHODS

Two datasets were retrospectively analyzed:

- 10 pairs of inhale/exhale phases from lung 4DCTs, with 300
corresponding landmarks available for each case (DIR-Lab dataset
[1.2]).

10 pairs of pre/post-radiotherapy liver contrast-enhanced CT
scans, each with 5 manually picked vessel bifurcation
correspondences [4].

The workflow proposed to detect landmark correspondences in the
pairs of images is detailed in figure 1:

In all images, the lungs or liver were segmented using the MBS

method in RayStation (RaySearch Laboratories) or a deep learning

method [3] for the lungs and liver, respectively.

Using these segmentations as masks, an automatic segmentation

of the internal vasculature was performed by computing and

thresholding a vesselness image as previously described in [4] and

[5]-

Images of the vasculature centerline were computed and

bifurcations were detected based on the number of neighbors of

each centerline voxel.

In parallel, the vasculature segmentations were independently

registered using a Demons algorithm between representations of

their surface with distance maps [5].

Detected bifurcations were considered as corresponding when

distant by less than 4mm after vessels DIR.

All pairs of images were registered considering a rigid, Anaconda in

RayStation and a Demons algorithm.

Two evaluations of the TRE were performed:

- Evaluation A: the mean TRE was computed using all detected
correspondences and compared to the TRE calculated using
the available ground truth landmarks correspondences.
Evaluation B: only the landmarks the closest to the ground
truth landmarks where used for TRE calculation.
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Figure 2. Example of liver case.
Left images: axial and coronal
slices of the pre-treatment contrast
enhanced CT scan with the auto-
segmentations of the liver (in blue)
and vasculature (in red). Right:
Representation of the the liver
surface and segmented
vasculature centerline. Green
spheres: the 5 ground truth
landmarks. Blue spheres: the
detected landmarks for which a
correspondence was established
on the post-treatment image. White
spheres: the bifurcations that were
detected in the pre-treatment
image but discarded because no
reliable correspondence could be
established in the post-treatment
image according to the vessels
DIR.
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Figure 1. Workflow of the automatic definition of landmarks for TRE calculation.
Example with a lung case from the DIRLab dataset (Case2).
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Figure 3. Representation of the
correlation between the TREs
calculated using the ground truth
or automatically detected
landmark correspondences.

Top row: for the 10 lung cases
and 3 registration methods.
Bottom row: for the 10 liver
cases and 3 registration
methods.

Left (Evaluation A): TREs
calculated using all the detected
landmarks.

Right (Evaluation B): TREs
calculated using only the
detected landmarks the closest
to the ground truth.
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RESULTS

Figure 2 shows an example of bifurcations detection for a liver case.
Because of the challenge in visually identifying corresponding
bifurcations in this case, the spatial distribution of the manually picked
landmarks (green spheres) did not cover a part of the liver as large as
the automatically detected bifurcations did (blue spheres). For this
reason, differences in mean TRE using either the ground truth or all
automatically detected bifurcations, in Evaluation A, could be
observed. Evaluation B aimed at validating the proposed automatic
approach by comparing the TREs when considering only the
landmarks detected the closest to the ground truth landmarks.

Figure 3 shows a strong correlation was obtained between the mean
TREs calculated using either the reference or closest detected
landmarks (Evaluation B): 0.94 for the lungs dataset and 0.89 for the
liver dataset. This correlation was lower when using all the detected
landmarks but remained high (Evaluation A): 0.82 for the liver and 0.85
for the lungs, which was likely due to the fact the proposed approach
did not constrain the density of detected bifurcations; or in the case of
the liver dataset, may have provided a better coverage of the whole
liver volume.

CONCLUSION

For lungs or liver CT scans DIR, a strong correlation was obtained
between TRE calculated using manually picked or landmarks
automatically detected with the proposed method. This tool should be
particularly useful in studies requiring to efficiently assess the reliability
of a large number of registrations.
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