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Fast Monte Carlo Dose Estimation for Proton Therapy using

a Dual-Pyramid Deep Learning Framework
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INTRODUCTION

The Monte Carlo (MC) algorithm has long been the gold standard for dose calculation in
radiation therapy, especially for ion beams, and clinical treatment planning systems have
recently added MC dose calculation models. Since computational time for MC varies with
dose grid resolution and size, fine resolution calculations may take several hours to
calculate, depending on the treatment field size. Pencil-beam algorithms can quickly
calculate dose; however they can be inaccurate, especially near large heterogeneities.
Thus, it is desirable to have a dose calculation algorithm with accuracy comparable to MC
and computational time comparable to PB.

AlM

In this work, we adapt a dual-pyramid networks (DPNs) architecture to learn the
differences between a pencil-beam (PB) based dose distribution and the more accurate
MC calculation. This dual networks independently learns from the CT and input dose
distribution and later selects the most significant features from each to generate an
output dose distribution. Using two inputs, the proposed method can rely on the PB dose
for a first approximation of the dose distribution and the structural information in the CT
to fine-tune the dose distribution, achieving accuracy similar to the MC-calculated dose.

METHOD

Dose from the clinically used ion beam plan for 20 prostate cancer patients being
treated with intensity-modulated proton therapy (IMPT) were re-calculated using
Pencil Beam (PB) algorithm in Raystation 9A with a 3x3x3 mm? dose grid and with
MC using a 1x1x1 mm?3 dose grid at 0.5% statistical uncertainty

The dual-pyramid network (DPN) architecture is shown in Fig. 1. Each individual
pyramid network has a U-Net-like architecture for end-to-end synthesis

The full dose distributions from each beam are fed into the network

For increased variability in the training data, a script was developed to calculate dose
for a series of shifts (5 mm #x, ty, and *z) and rotations (3° troll and *yaw) of the
beam. In total, 10 plans, in addition to the nominal plans, were created per patient
2-fold cross-validation with 20 patient datasets were used for validation. The training
took ~7.5 hours on on a NVIDIA Tesla V100 GPU with 32GB of memory, and the
generation time for a new dose distribution was ~5 seconds
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Fig. 1. Dual-pyramid networks architecture. The PB dose distribution calculated on a 3 mm? dose grid and
CT image are the source data and the MC dose distribution with a 1 mm? dose grid is the target data. The
pyramids on the left are trained on their corresponding input datasets independently, and this information
is combined on the right in the late fusion network.
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RESULTS

* DL-Generated and PB dose distributions were compared against MC-generated dose
distributions, which were taken as the ground truth

* Metrics for evaluation:

+ Gamma analysis at 1%/1mm with a 10% threshold. Due to the sensitivity of gamma
analysis to noise!, the smoother dose distribution (either DL or PB) was used as the
reference dose distribution
Structural similarity (SSIM), which has been suggested as a complement to Gamma
for evaluation dose distributions?3:
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where Wyes, Heyal, are local mean values for the reference and evaluated RSP maps,
respectively, and O,¢f, Ocya), aNd Opefeval and g, are the standard deviations and
cross-covariance for doses.
SSIM tests three quantitative image metrics: luminance, contrast, and structure.
Peng et al showed that, when applied to dose distributions, these metrics can detect
errors in absolute dose, gradient, and dose structures, respectively?
* Mean error (ME) and mean absolute error (MAE)
* All metrics were evaluated on a beam-by-beam and plan-by-plan basis
* The proposed DL-generated dose distributions very strongly reflected the MC dose
distribution. Figs. 2 shows boxplots for all metrics, Fig. 3 shows dose distributions and
gamma analysis for two sample cases, and Table 1 summarizes the numerical results.
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percentage of the maximum dose, and MAE in the top right panel is calculated from only the high
dose region (>90%).

CONCLUSIONS

The proposed network was able to learn the differences between PB-calculated dose distributions calculated
with a 3x3x3 mm? dose grid and MC-calculated doses calculated with a 1x1x1 mm? dose grid
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Fig. 2. Box and whisker plots for all comparison metrics. Both ME and MAE are expressed as P-value
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Fig. 3. Dose calculation and gamma distributions for a sample patient representing an average case (left 3 panes) and the best case (right 3 panes), based on passing gamma rate for the plan.

dose region (<90%) .

Gamma pass rate Mean gamma SSIM
Per Beam Per Plan Per Beam Per Plan Per Beam Per Plan

DL PB DL PB DL PB DL PB DL PB DL PB
96.7%  94.5% 93.8% 924% 031 042 036 046 099 0.97 0.99 0.96
5.7% 5.5% 7.6% 5.6% 011 0.09 0.13 0.10 0.01 0.00 0.01 0.00
71.6%  73.5% 71.2% 73.6% 074 072 024 036 098 0.96 0.96 0.95
99.8% @ 99.3% 993% 98.3% 0.20 033 0.73 0.78 | 1.00 0.98 1.00 0.97

0.04 0.23 <0.0001 <0.0001 <0.0001 <0.0001
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Future work will extend this framework to more geometrically varying treatment sites, such as head and neck

Table 1. Summary of quantitative analysis comparing both the DL-generated dose and PB-calculated dose to the MC-calculated dose. Both ME and MAE are expressed as percentage of the maximum dose, and MAE is calculated for only the high

ME MAE (high dose)
Per Beam Per Plan Per Beam Per Plan
DL PB DL PB DL PB DL PB

-1.4E-03 | -4.7E-03  -4.5E-03 | -7.7E-03 8.64E-3 | 1.5E-02 | 1.6E-02 2.8E-02
4.5E-03 3.6E-03 5.4E-03 4.7E-03 2.0E-03 | 5.0E-03 4.8E-03 1.0E-02
-1.6E-02 | -1.3E-02 | -1.9e-02  -1.9e-02 1.3E-02 3.0E-02 2.6E-02 6.0E-02
1.1E-04 | 1.3E-04  1.6E-04 | 4.9F-04 5.8E-03 83E-03 1.0E-02 1.4E-02

0.0004 0.04 <0.0001 <0.0001
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