Reducing IMRT QA workload by 95% and keeping the same level of quality control
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Background: Current machine learning methods

for predicting IMRT quality assurance metrics minimize
the average error over all plans. However, minimizing
the maximum error possible over all plans is most
important because one erroneous prediction for a
single patient can result in a wrong decision regardless
of low average error over the whole population [1]. Our
objective is to introduce Chebyshev minimax loss
function [2] as the natural selection for IMRT QA
metrics that minimize the maximum error when
predicting QA passing rate. Our proposed method will
be compared to a typical linear model that use ordinary
least-squares minimization [3,4].

Purpose: To reduce the maximum possible error

(max-error) in a quality assurance (QA) program by
using a novel machine learning (ML) algorithm for
predicting QA plan passing rate that minimizes the
max-error.

Methods: A total of 498 IMRT QA plans were

delivered on 5 linear accelerators and Gamma
passing rates were measured based on 3%/3mm.
Plans were characterized by 78 features (Figure 1).
Linear models were developed using minimax (MM)
and ordinary least-squares (OLS) optimizations.

OLS minimization problem/solution are given below: | Minimax problem and linear solution are given below:
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where A is MxN matrix with M plans and N features
values, x is an Nx1 matrix containing the coefficients
of the linear model, and b is an Mx1 matrix containing
passing rate of each plan’s IMRT QA.

Results: Training performance

498 IMRT plans:

- Multiple sites (breast, CNS, Gl, GU, Lung)
- Planned with Eclipse, mostly 6X beams

- Delivered with 5 TrueBeam LINACs

- QA measured with Mapcheck2 (3%/3mm)
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78 features were exiracted to characterize plans:
- MLC leaf transmission

- Leafend leakage

- Transmission through jaws

- Tongue and groove effect

- Charge particle equilibrium failures

Figure 1 describes the IMRT QA dataset and model features (right).
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Figure 2 shows the distribution of plan passing rate differences for the
OLS (top) and Minimax (bottom) models for training data. Reduction of
max-error in the minimax model is due to optimization of data outliers.

Results: Testing performance

40 Least-square model (MSE) 40 Minimax Model
—T— Testing —T— Testing
—F— Trainin —F— Trainin
30 g 30 g
|

Mean Squared Error
n
o

Mean Squared Error
n
o

-
o
-
o

1000 2000 3000 4000
Number of training cases

o : o
0 1000 2000 3000 4000 5000 0 5000

Number of training cases

Least-square model (max) Minimax Model

—T]— Testing
—F— Training

iy
o

]
o
w
o

}

M. o=
ﬂm@ﬂﬂﬂ@mﬂ

Max Absolute Error
n
o

Max Absolute Error
[\ ]
[=]

—_
o
T
—_
o

1000 2000 3000 4000
Number of training cases

Figure 3 learning curves showing mean and max error for OLS (left) and
Minimax (right) for training (black) and testing (red).
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Figure 4 shows the
results for test
dataset with OLS
max  error for
prediction is 7%
(left), and minimax
prediction error is

4% (right).
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Results: Reducing QA workload
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Figure 2 shows that to make sure all plans achieve a 90% passing rate,
133 plans would need testing with OLS versus 24 plans with Minimax.

Discussion: Max-error of IMRT QA passing rate

predictions was 7.6% for the OLS model and 3.0% for
the MM model. The mean square error was, however,
1.4% and 2.8% for the OLS and MM models
respectively. Following optimization and testing with
hold-out sets (20% plans), the OLS and MM model
max-errors were 7.0% and 3.8% respectively. To
ensure that all plans have at least a 90% passing rate,
all plans predicted to have 97.0% passing rate or
lower (133 out of 498, 27.0%) would require QA using
the OLS model. With the MM model, however, all
plans predicted to be 93.8% or lower (24/498, 4.8%).

Conclusion: Chebyshev’'s minimax optimization

results in a reduction of the maximum error possible of
machine learning algorithms. This algorithm can
selectively choose plans that are more likely to fail QA
for the physicist to prioritize resources according to TG
100. Efficient QA programs that ensure safe IMRT
treatments require accurate identification of plans that
are likely to fail QA criteria. Using a Minimax model, a
95% reduction of resources for IMRT QA can be
achieved while meeting current passing criteria.
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