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INTRODUCTION

Treatment planning for radiotherapy is a tedious, time-consuming
task that requires a number of iterations between the planner and
the physician in order to create plans satisfying the physician’s
requirements. In an effort to overcome this burden, there has been a
number of developments to define metrics to represent physician’s
preference. However, none of the existing quantitative metrics can
fully respects a physician’s intention, as the physician’s mind can be
hardly quantified in a certain mathematical form. Lately, it was
believed that a deep neural network can be used represent almost
any functions accurately and flexibly. Driven by this idea, in this work,
we developed a deep-learning based method that learns physician’s
intention and incorporates it into dose prediction for high-dose-rate
brachytherapy (HDRBT).

To our knowledge, this is the first time that a deep learning
framework was developed to represent physician’s intention when
deciding to accept or reject a plan. This was made possible by using
the state-of-the-art deep neural networks that can be used to
represent functions accurately and flexibly and by an innovative
network training process. The methodology of this tool can be
potentially generated to other sites and technologies to provide
guidance for different treatment planning applications.

METHOD

QOverview

The system consisted of a dose prediction networks (DPN) and
preference prediction network (PPN). DPN predicts EQD2 of OAR
D2cc and CTV D90 from patient 3D anatomy. PPN reflects a
physician’s intention by outputting the probability of a given plan
being acceptable to the physician based on the patient’s anatomy.
Network training was performed first through individual training,
followed by joint DPN-PPN training. We collected approved
treatment plans of 228 treatment fractions from 64 patients. Among
them, 200 plans from 57 patients was employed as training and the
remaining 28 plans from other 7 patients were saved for testing.
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Fig. 1. Method of converting binary contours to distance histograms.

METHOD

Data Pre-Processing

We obtained physician contours of patient
anatomy that were delineated during patient
treatment. All contours and plan information were
exported from Eclipse Treatment Planning System in
DICOM-RT format then processed into binary images
in MATLAB. Binary contour volumes were resampled
from 1.1719 mm x 1.1719 mm x 2 mm resolution to
1 mm x 1 mm x 1 mm resolution. Patient OAR binary
contours (bladder, rectum, and sigmoid) were
converted to a distance from CTV boundary map
and the CTV binary contour was converted into a
distance from source map. OAR and CV distance
maps were then converted in distance histograms

(Fig. 1).

Network Individual Training

In individual training, DPN was trained to output
clinical dose distributions, while PPN was trained to
differentiate clinical plans from those generated by
randomly perturbing dwell times of corresponding.

RESULTS

After joint training, the models were evaluated
on their ability to predict a physician’s preference
for a given plan. DPN accuracy was quantified using
relative error. PPN model was evaluated 6 times for
every testing fraction. the 6 testing samples come
from: clinically approved EQD2, DPN-predicted
EQD?2, increasing DPN prediction twice between
10% and 15%, and decreasing DPN prediction twice
between 10% and 15%. Results were quantified via
sensitivity, specificity, and AUC.

DPN Results

After training, we evaluated the DPN ability to
predict patient EQD2. More specifically, this
prediction error was calculated to be 8% + 7.5%,
8.8% + 5.9%, 7.2% + 6.2%, and 6.9% + 4.8% across
the bladder, rectum, sigmoid, and CTV, respectively.
Results for the 28 testing fractions are shown in Fig.
4,

clinical plans.

Network structures can be seen in Fig. 2. This
step provided good initializations for the next step.
Loss functions for DPN and PPN are shown in Eq. (1)
and Eq. (2), respectively, over a training data set, Tr,
where A is the patient anatomy represented by the
distance histograms, P is a given plan defined by
OAR and CTV EQD2, and Y is the label of
“acceptable” (value of 1) or “unacceptable” (value of
0) for a given plan. Unacceptable plans, in addition
to those plans that exceed clinical constraints, also
include plans that satisfy these planning goals but
are infeasible in practice.
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Fig. 2. Network structure of DPN (left) and PPN (right).

PPN Results

For a given testing fraction, after applying the
threshold, we found that the DPN was able to
differentiate between “acceptable” and
“unacceptable” plans 9% from the clinical plan with
90% accuracy, and a sensitivity and specificity of
0.88 and 0.85, respectively. Results are shown in
Fig. 5.
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Fig. 4. DPN individual structure and overall OAR relative error. Central red mark
indicated median, top and bottom edges of box indicated 75" and 25"
percentiles, respectively.

Fig. 5. ROC curve (left) and confusion matrix and predicted class (right). In
the confusion matrix, class of “1” represent unacceptable plans and class
of “2” represent acceptable plans.
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min Eeer, [IDPN (P, A16) - Y I13] Eq. (1)
min Eeer,[IIPPN(AI8) — Clinical EQD2||Z] Eq. (2)

Network Joint Training

In the second step of joint training, two network
models were simultaneously fine tuned via an
adversarial process as seen in Fig. 3.
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Fig. 3. Joint training procedure between DPN and PPN

More specifically, the network parameters in DPN
and PPN were trained alternatively in an adversarial
fashion.
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CONCLUSION

Through a combination of individual and joint training, we
were able to develop two models: (1) a DPN that predicts
patient-specific dose for a given fraction, and (2) a PPN that
predicts the physician’s intention for a given plan based on
patient anatomy. Both the DPN and PPN models were
evaluated on the same 28 independent testing fractions from
HDRBT treatment planning for cervical cancer. We found that
under this novel framework, DPN can accurately predict
anatomy-specific clinical EQD2 and PPN was able to learn the
physician’s preference for a given plan based on patient-
specific anatomy.
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In each training iteration, network parameters of
PPN were updated by solving the optimization
problem in Eq. (3) with DPN being frozen. PPN was
then fixed and DPN was trained by solving the
optimization problem in Eq. (4). By using this
framework, PPN was able to continue learning
beyond the limited dataset available through
independent training with new data generated by
DPN at each epoch. This adversarial process not only
refined PPN on learning the physician’s intention,
but also incorporated it as a guidance to train DPN
for more accurate EQD2 prediction.

min Eer,[IIPPN(Clinical EQD2, Al6ppy) — 1113
PPN

+ |PPN(DPN(A|6ppy), A)|6ppn)lI3]

‘%E}v E.terr[“lPPN(DPN(A|6DPN)uA)|6PPN) - 1”%
+ A[PPN(A|8ppy) — Clinical EQD2|13]

Eq. (3)

Eqg. (4)
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