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INTRODUCTION

For dose prediction, the initial expectation is that the
prediction of a full volumetric dose would have the
best performance, due to the fact that the deep
learning model has to utilize all the information in the
patient body. However, deep learning-based
volumetric dose prediction models may be hindered
by an inherent smoothness and continuity constraint
on the dose distribution. Prediction errors from one
region may be propagated to another region by such a
constraint. We investigate whether a volumetric dose
prediction model, using deep learning, on the whole
body or only on the planning target volume (PTV) has
any effect on the model’s performance on the PTV.

METHODS

For Comparison, we investigated 2 models:
» PTV Model
« Model is trained to only predict the PTV dose
distribtion and ignores predicting and dose
outside the PTV
 Loss function = ﬁZiMi,pTy(Ti — P;)?
* npry = number of voxels in PTV
* M;pry = value of PTV mask at ith voxel
« T; = ground truth at i®"voxel
« P; = prediction at i'"voxel

» Body Model
» Model is trained to predict all the dose defined
within the body

. 1
* Loss function = ——Y;M; goa,(T; — P;)*
NRody ’

* Npgogqy, = number of voxels in Body
* M;goqy = value of Body mask at ith voxel

+ To maintain fairness, both models used the:
+ Entire data volume as input and predicted the
entire output volume.
« Same voxel resolution (5 mm3).
+ ldentical model architectures.
« Same training hyperparameters
+ Training done on same machine
+ See DATA AND TRAINING for specific details
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Averaged PTV Metrics Across All Test Patients

RESULTS 1.05 0.12

DEEP LEARNING ARCHITECTURE

U-net Architecture
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Prediction Error Statistics
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On the 10 test patients we evaluated 0.95 2 0.06
the error of the predicted doses of the : I"I" II II S 0.04
PTV and body model using the | ﬁ ’-h 8 0.02
following clinical metrics: PTV mean 0.85 0
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Legend The results are shown in Table 1. Figure 1: Clinical metrics averaged across all 10 test patients. Error bars = 1 standard deviation.
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* 57 training, 5 validation, 10 test patients Homogeneity 0.011£0.008 0.026£0.014 <0.05

* 128 x 128 x 32 array ) Table 1: Prediction errors of the predicted doses - 0'8_9(] 0_92 0.94 0.96 0.98 1.60 1-02 1-':34
« 5mm x5 mm x5 mm voxel size versus the ground truth dose. Both the PTV model Fractional Dose

and Body model were svaluated. Figure 2: Dose volume histogram of the PTV for 1 example test patient. 1.05

+ Training the network

g The PTV Model outperformed across '
U-net style architecture every metric compared to the Body 1
Mean squared error (MSE) Model.  Except  for  Dmax(p- o
Adam optimization algor_ltghm value=0.0787), all other differences 1.00 S
* Learning rate =1 x 10 were statistically significant(p- o
Dropout set to 0.1 throughout the network value<0.05). Figures 1-3 show several 5
Group Normalization metrics and washes of the ground truth Q
Rectified Linear Unit (ReLU) activation clinical dose, PTV model's dose, and 0.95 O
. e . Body model’s dose for test patient. In '
* Machine Spoclflcatlons all c‘;ses, the PTV model’s d’:)se more 8
* Intel Core i7-7800X CPU closely resembles the ground truth - .
* NVIDIA 1080 Ti GPU (11 GB Memory) clinical dose. C||n|Ca| PTV MOdeI BOdy MOdel

+ 32 GB RAM

Figure 3: Dose washes in the PTV for the same example test patient as in Figure 2.
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Focusing a dose prediction model to learn a particular ROl may
significantly improve the performance of the model. By only
allowing a loss value inside the PTV, the model no longer has
concerns for PTV boundary smoothness and continuity constraints
as before, and potential error outside the PTV is no longer
propagated. We found that the PTV Model easily outperformed the
Body Model in every metric of interest, with only the maximum dose
to the PTV as not statistically significant. We intend to expand this
study to all organs-at-risk to develop a complete framework.
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