INTRODUCTION

» Monte Carlo (MC) simulation is considered the gold standard
for accuracy in radiotherapy dose calculations due to its
detailed modelling of individual physical interaction processes.

However, simulating individual physical processes results in
long computational time. This limits the clinical use of MC
simulations.

Can we use the power of deep learning to circumvent the long
calculation times without sacrificing the accuracy of MC
calculations?

AIM

« Train a Generative Adversarial Network (GAN) to predict high-
resolution low-noise (HRLN) dose distributions from low-
resolution high-noise (LRHN) MC dose distributions.

METHODS
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Figure 1. Supervised learning using Enhanced Super-Resolution
Generative Adversarial Network (ESRGAN). Super-Resolution enables
us to create images with higher spatial resolution and less noise.

+ A model of a clinical 6MV photon beam was constructed using
schematics and phase space data.

Simulations were performed in the dosxyznrc and BEAMnrc
user codes of EGSnrc where dose distributions were generated
at multiple depths for a 10x10cm?2 field.

Voxel resolutions of 4mm3 and 1mm3 in a homogeneous water
phantom, with corresponding simulation uncertainties of 5%
and 0.7%, were considered.

ESRGAN was trained using dose distributions from depths 2,
5,and 10 cm.

Each training sample consisted of an input-output pair of a
LRHN and HRLN dose distribution, respectively.

Testing was performed on dose distributions from the trained
depths plus unseen depths of 3, 4, 7, 15, & 20 cm.
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Figure 2. Dose profiles for test data at seen depths of 2, 5 and 10 cm. Left: Low
resolution high noise input. Right: High resolution low noise prediction (PR) and the
corresponding ground truth.

Figure 3. Dose profiles for test data at unseen depths of 3, 4, 7, 15 and 20 cm. Left:
Low resolution high noise input. Right: High resolution low noise prediction (PR) and
the corresponding ground truth.

The trained model accurately predicts HRLN dose distributions at the
. Trained depths, 2,5, and 10 cm;

. At in-between depths unseen during training, e.g., 3, 4 and 7 cm;
and

. At depths beyond 10 cm, unseen during training, e.g., 15 and 20
cm.

For the qualitative assessment of the predicted dose distributions refer
to the dose profiles on test data shown in figures 2 and 3.

In Figure 2, the left panel shows the dose profiles for the low-resolution
high-noise input at depths 2, 5, and 10 cm. The right panel shows the
corresponding high-resolution low-noise ground-truth and prediction. As
seen in the figure, the predicted profiles are close to the ground truth
profiles.

In Figure 3 the dose profiles are shown at depths that were not included
during training.

Figure 4. contains boxplots representing the % relative error in the
predicted dose distributions across the central 80% for all the samples
in the dataset.
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represent the ground-truth and prediction respectively.

The % relative error is calculated as , where y and y

The relative errors are well within 5% for all the depths.

% Relative error
N w =N

—
1

Depth in cm

Figure 4. Boxplots representing the percentage relative error in the predicted dose
distributions across the central 80% for the entire dataset. Observe that the relative
error is less than 5% across the samples and depths.
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CONCLUSIONS

» Our main message is that a Generative Adversarial Network (GAN)
could be trained to accurately predict high resolution low noise
(HRLN) dose distributions from low resolution high noise (LRHN)
dose distributions obtained via Monte Carlo (MC) simulations.

To the best of our knowledge, this work is the first attempt using a
GAN to substantially reduce HRLN MC dose calculation times. The
required computation time to generate the HRLN data used in this
work was approximately 76 hours (CPU time) to simulate 2.5 x 10?
primary particles using 60 parallel simulations. Using the trained
model we can generate the same data in a few seconds.

Our experiments show that the generated dose distributions are
comparable to those generated from analog HRLN MC simulations.

Future research includes expanding the model to include:
+ Smaller radiation field sizes;
» Asymmetric shapes; and

» Heterogeneous media.
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