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INTRODUCTION

Water calorimetry is a method to obtain absolute dose to water directly’

In water calorimetry, the dose is obtained by measuring the radiation induced
temperature change

To minimize the presence of impurities in water that could in turn affect heat defect, the
point of measurement is surrounded with a glass vessel filled with pure water2+

In calorimetry, the heat fransfer correction (k;,) accounts for additional heat loss/gain at
the point of measurement

AIMS

To optimize the design of a water calorimeter so that it can be used in convectional
linacs, MR-integrated linacs, as well as any volumetric delivery techniques

To construct the calorimeter from materials that will enable its positioning using onboard
imaging alone

To optimize the design of a glass vessel so that it can be used for both photon and
electron beams

To use our calorimeter in a conventional linac as well as an MR-integrated linac

METHODS

Finite element method (FEM) analysis was used to optimize the overall design of the
calorimeter (FIG 1)

Different designs were evaluated by comparing the overall thermal stability at the point
of measurement

FEM analysis was used to optimize k;, for a cylindrical glass vessel

Simulations varied vessel dimensions (front/back glass thickness) under different
energies (6 MV, 7 MV-MRL, 6 MeV, 9 MeV, 18 MeV)

Position of the vessel with respect to the measurement point was also varied

The final designed calorimeter was completely MR-compatible and can be positioned
using MR, MV, CT, and kV CBCT

Initial measurements were taken in an Elekta Versa HD under a 6 MV FFF beam
Measurements were also acquired in an Elekta Unity MR-linac with a 7 MV beam and
1.5 T Magnet

Figure 1 - FEM analysis model showing: Geometry (A), mesh discretization (B), and
thermal distribution solution (C) inside the modeled water calorimeter tank
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RESULTS

FEM analysis showed that a three shell acrylic water tank with Aerogel acting as insulators
between the shells provided the most effective insulation (FIG 2)

The walls of the calorimeter also contain pathways for coolant to flow

It has a cylindrical top to allow for direct beam incidence from the top, as well as a
hemispherical bottom to accommodate for volumetric delivery methods

The calorimeter lid was further insulated with a removable 38 mm piece of Styrofoam

Glass vessel analysis showed that temperature fluctuations were most sensitive to changes in

vessel glass window thickness

For a 6 MeV beam, k,,was most sensitive to changes in top vessel thickness varying by as
much as 8.9 % with a 1 mm change in top thickness

For thermistor detectors positioned at distances beyond 6 mm from the top surface of the
vessel ky,reaches a steady state for all designs (FIG 3)

Results were used to design a glass vessel (FIG 4) with bottom and top thicknesses of 0.7
mm, with 22.66 mm between the surfaces

This vessel can thus be used for both photon and electron beams

The calorimeter design allows for full imaging of the tank and vessel for positioning with MRI,

CT, and CBCT, enabling very rapid setup in <1h

Measurements (n = 30) inside a 6 MV linac yielded a 0.06 % standard error with the dose
agreeing to within 0.25 % of an NRC calibrated ionization chamber

Absolute absorbed dose was successfully measured in an Elekta Unity MR-linac
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Figure 3 - Graphs showing k;, vs position of measurement point for a 6 MeV beam. The color represents the
thickness of the top glass plate while each graph represents a fixed bottom plate thicknesses. We can see that
both graphs have the same shape regardless of bottom thickness

Figure 4 —Final constructed glass vessel inside a glass vessel holder
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Figure 2 - AutoCAD® generated cross-section of entire water calorimeter along with fully assembled calorimeter

Figure 5 A) Glass vessel in calorimeter with copper markers placed on the base of temperature detectors and
at back of vessel, B) corresponding EPID image taken in MR-linac, and C) T1-weighted image of vessel taken in
MR-linac showing the temperature detectors
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CONCLUSIONS

An MR compatible water calorimeter was designed and constructed using FEM
analysis

A glass vessel that can be used for both photon and electron beams was designed
using results from FEM analysis

The calorimeter is the first of its kind that can be positioned using imaging alone

Measurements in a 6 MV beam showed that the calorimeter can be used to accurately
measure absolute absorbed dose

The calorimeter was successfully used to measure absorbed dose in an MR-integrated
linac

Future work will focus on performing measurements in electron beams as well as
volumetric delivery methods
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