Building a patient-specific model using transfer learning for 4D-CBCT
augmentation
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PURPOSE

* Previously we developed deep learning models to augment the quality
of 4D-CBCT images. [1] However, the model was trained using a group
of patients’ data, and therefore may not be optimized for individual
patients. [2]

RESULTS CONC LUSIONS

The proposed transfer learning method demonstrated its
capability of augmenting the image quality of under-sampled
3D/4D-CBCT by building a patient-specific model.

The patient-specific model further enhanced the anatomical
details and reduced noises and artifacts compared to the
traditional group-based deep learning model.

The quantitative analysis using SSIM and PSNR (Table 1) showed that the
major improvement from the transfer learning method lies in the lung area while
the improvement in body area excluded lung is limited. o D P T v

The augmentation of body area from U-net is already satisfactory (Fig. 2A) with . .

SSIM higher than 0.95.
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The augmentation by the group-based U-net in the lung area is suboptimal due
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In this work, we explore the feasibility of transferring a general deep
learning network trained with a group of patients’ data to a patient-

specific network retrained using a specific patient’s data. The technique can be used for reducing the imaging dose or

improving the localization accuracy using 3D/4D-CBCT, which can
be very valuable for SBRT treatments.

to the complexity of the lung structure and the variations across patients. The

transfer learning method was capable to recover more detailed anatomical g
structures that are lost in U-net augmentation. (Fig. 2B) o
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METHODS

Demonstrated in Fig. 1, the network model is first trained to augment
under-sampled CBCT to match with fully-sampled CBCT or planning
CT images using a group of patients’ data.

Then, the model is retrained into a patient-specific model using the
specific patient’s CT or prior days’ CBCT data with transfer learning to
optimize its performance for individual patients.

The network can be adaptively updated by adding the latest day’s
CBCT images in the training data. [3]
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(Figure 1. Overall transfer learning workflow)

Two transfer learning methods, including the whole-network fine-
tuning method and the layer-freezing method, were investigated in
our study.

The whole-network fine-tuning method uses the new patient data to
retrain all the layers in the network but lower the learning rate to
make the parameter change slowly from the starting point.

The layer-freezing method starts with the trained model as well but
retrains only the bottom and final layers of the network
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Figure 2B. Comparison between lung
images extracted from Fig. 2A.
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Table 1. Comparison of CBCT reconstructed from simulated projections.

Basic U-net image

The performance of transfer learning is slightly degraded due to the noises and
artifacts in the fully-sampled CBCT images, which were used as the ground
truth. (Table 2)

Transfer learning had a better performance on 10% projections CBCT images
for real projection data than DRR data. This may be because that the transfer
learning model is better at eliminating noise and streak in the real CBCT images
than basis U-net model. Layer Freezing Body _ _ Basic Uonet Body __ Ground Truih Body
The differences map between U-net image and layer-freezing image in Fig. 3B
showed that most difference were from the edge area of the lung and the area
around bones that have a lot of noises.
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Table 2. Comparison of CBCT reconstructed from real projection data.
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Figure 3A. Comparison of CBCT
reconstructed from 179 real
projections
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Figure 3B. Comparison of CBCT
reconstructed from 89 real
projections
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