

Real-time adaptive dose scaling during MLCtracking on the Elekta Unity MR-Linac

P.T.S. Borman¹, P.L. Woodhead^{1,2}, P Uijtewaal¹, S.L. Hackett¹, J.J.W. Lagendijk¹, B.W. Raaymakers¹, M.F. Fast¹ ¹ Department of Radiotherapy, University Medical Center Utrecht, The Netherlands ² Elekta AB, Stockholm, Sweden

Introduction

- Intra-fractional tumour motion is a major source of uncertainty in EBRT.
- Motion can be visualized in real-time using 2D Cine MRI.
- MLC-tracking, i.e. continuously adjusting leafs and diaphragms, can mitigate such geometric target displacements.
- MLC-tracking does however not account for the spatially varying FFF beam profile.
- We demonstrate how MLC-tracking can be combined with realtime adaptive dose scaling to account for the FFF beam profile.

LR (mm)

Fig. 1: FFF beam profile, normalized at iso-center

Methods

- 1.5T Unity MR-Linac² with MLC-tracking firmware¹
- Quasar MRI^{4D} motion phantom³
- o Film insert with a 30mm target
- 100mm laterally off-iso-center
- Cos⁴ (T=5s, Ampl = 15mm) trajectory
- Cranial table offsets of 25mm/50mm to simulate large shifts.
- Liver SBRT plan (3x20Gy, 15-beam)

Imaging and Tracking

- 4Hz 2D Cine-MRI
- Position calculated using template matching
- Linear Ridge regression prediction for 240-490ms system latency.
- MLC aperture adapted every 80ms

Dose scaling

- Baseline position calculated from average position of last two respiratory cycles.
- Projected into a relative baseline shift in the FFF profile.
- Monitor units of subsequent segments scaled accordingly.

Fig. 2a: CT slice through showing the body oval, target and film insert

Fig. 2b: motion phantom

Fig. 3: Schematic of the treatment adaptation loop with MLC-tracking based on the predicted position and Dose scaling based on the average position.

Results

- For target shifts >20mm, the dose diff. is >1% (Fig. 4).
- Gamma analysis (2%/2mm/2Gy thresh.) w.r.t. static delivery.

Gamma pass-rate	No Scaling	Scaling
0mm cc baseline shift	99%	
25mm cc baseline shift	89.9%	99.9%
50mm cc baseline shift	60%	90%

Fig. 4: Dose scaling factor as a function of target shift.

Fig. 5c: Gamma maps for 50mm cc shift

Conclusion and Discussion

- MLC-tracking results in highly conformal dose distributions, compensating for respiratory motion.
- The FFF beam profile can be accounted for by adapting the target dose per segment on-the-fly during delivery.
- For target shifts >20mm, the FFF profile needs to be accounted for.
- For target shift of 25mm, adaptive dose scaling significantly improved the Gamma pass-rate.
- For unrealistic large targets shifts of 50mm, the proposed dose scaling method is insufficient.

¹Glitzner et al. doi: 10.1088/1361-6560/ab2667 ²Elekta AB ³Modus Medical Devices

MF Fast acknowledges funding by the Dutch Research Council (NWO) through project #17515 (BREATHE EASY). PTS Borman, BW Raaymakers acknowledge funding by ITEA though project 16016 (STARLIT).