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INTRODUCTION

Treatment planning in modern radiation therapy
involves using both computed tomography (CT) and
magnetic resonance imaging (MRI) for many disease
sites in patients. Although CT images provide
electron density values needed for treatment
planning, MRI images provide superior soft tissue

contrast to delineate tumors and soft tissues. several
challenges must be overcome before introducing
MRI-only planning into the clinic, including
developing robust methods to accurately generate
synthetic CT images from MRI images. This study
assessed the dosimetric accuracy of synthetic CT
images generated from magnetic resonance imaging
(MRI) data for focal brain radiation therapy, using a
cycle generative adversarial network approach.

METHODS

We conducted a study in 77 patients with brain tumors
who had undergone both MRI and computed
tomography (CT) imaging as part of their simulation for
external beam treatment planning. We designed a
CycleGAN network to generate synthetic CT images
from MRI images. The model was trained using all MRI
slices with corresponding CT slices from each training
subject’s MRI/CT pair. Both images were imported into
the treatment planning system (Eclipse v15.0 Varian
medial System). Then, the synthetic CT images rigidly
aligned to the CT images for dose comparison using
Eclipse software. Targets and OARs including left and
right eye, optic nerves, optic chiasm, and brainstem
were contoured on CT images and reviewed by the
radiation oncologist. In the next step, CT contours were
transferred to the registered synthetic CT images, and
the optimized VMAT plan was transferred from CT to the
synthetic CT images. Dose was calculated on synthetic
CT images using the transferred plan from the original
CT images. In addition, we optimized the plan for CT and
synthetic CT separately and measure mean dose value
in planning target volume (PTV) and OARs

DATASETS

CT and MRI images from patients who had
undergone brain tumor radiotherapy were
analyzed. Tumor sizes varied between 1.1 and 42.4
cm3. The images were collected at the University of
Texas Southwestern Medical Center (UTSW) as part
of the standard treatment protocol. Patients
underwent both CT (Phillips Big Bore scanner,
Royal Philips Electronics, Eindhoven, The
Netherlands) and MRI scanner for radiotherapy
treatment planning. All CT images were acquired in
the Department of Radiation Oncology using a 16-
slice CT, 120 kV, exposure time= 900 ms and 180
mA. Images were acquired with a 512x512 matrix
and 1.5 mm slice thickness (voxel size
0.68mmx0.68mmx1.50mm). Because this is a
retrospective study and MRI scans were performed
in the Department of Radiology, image acquisition
used different vendors. However, the MRI images
were acquired using a 1.5T magnetic field strength
and a post-gadolinium 2D T,-weighted spin echo
sequence with TE/TR = 15/3500 ms, a 512 x 512
matrix and average voxel size 0.65 x 0.65x1.5 mm?.
The range of pixel size of MRI data was 0.51 x
0.51mm? - 0.88 x 0.88mm?Z. To train the model, the
MRI images were resampled to the same voxel size
of CT images. In addition, the synthetic CT have
the same voxel value as CT images (0.68 x 0.68x1.5
mm?3)

CONCLUSIONS
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The proposed method provided an accurate and reproducible
synthetic CT images using a GAN model, increasing efficiency,
accuracy, and precision in clinical workflow. The computational time
in our study was about 1 second per patient for generating synthetic
CT image and training time was 33 hours using a NVIDIA Tesla K80
dual-GPU graphic card. The Ml loss function enables the model to
use un-paired data for generating synthetic CT images. Future work
is to develop 3D GAN models with larger training datasets for
generating synthetic CT images to be used in MRI-only radiotherapy.
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Table 1. Absolute differences between relevant DVH metrics on the CT and SCT for the 11 test patients, expressed as percentage (%)
of the prescription dose (60 Gy). The last two columns contain the mean over all patients and its standard deviation (SD). NA: Not
Applicable, when the organ was not contoured for a specific patient. LON/RON: Left/Right Optic Nerve.
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