Characterizing the Excursion of Sensitive
Cardiac Substructures due to Respiration
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INTRODUCTION RESULTS

* Radiation dose to the heart is strongly associated with
increased risk of cardiotoxicity

Cardiac Substructure Displacements During Respiration

Figure 1: Centroid shift
comparison between all
thirteen substructures for
each direction: left-right (L-
R), superior-inferior (S-1),

. and anterior-posterior (A-
* P). Boxplots, thick line,
and whiskers represent
the interquartile range,
median, and 5th and 95th
percentiles, respectively.
Data points displayed as a
small circle represent a
value >1.5 times the
interquartile range (IQR)
and the star represents a
value >3xIQR.

Current whole-heart dose estimates used clinically are
not as strongly linked to cardiac morbidities as radiation

dose to individual cardiac substructures 3.1+26 24%+18 63+2.8 7.613.4
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Yet, cardiac substructures of the heart and their
movement throughout the respiratory cycle are not
considered in radiotherapy treatment planning, thereby
complicating effective sparing strategies

34+2.0 19+13 6.0+2.2 7.0+2.7

dedid,

A RV SVC

Displacment

39+3.1 21%+14 6.1+3.0 7.713.6
3.7+25 21+17 6.2+2.6 7.5+3.1

29122 16+11 4.9+2.0 6.0+£2.5

@
L ]
[ ]

PURPOSE iy “ h
. ' . . AA  Heat INC LA LADA LMCA LV 3.1+25 14106 4.01£1.7 54124

v To quantify cardiac substructure motion over the

respiratory cycle using 4-dimensional computed
tomography (4DCT) data (intra-fraction displacement)

v" To evaluate the potential dosimetric impact of

substructure motion

METHODS

Cardiac gated T2-weighted magnetic
resonance images (MRIs) were acquired
at end-exhalation (EE) for 11 patients who
underwent thoracic cancer treatment
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Figure 2: Two representative patients showing substructure excursion between 0% (bottom row) and 50% phase (top row)
images with the contours from each phase shown on both image sets for the axial and the sagittal axes. Left: Patient 1
exemplified minimal displacement over respiration. Right: Patient 9 underwent the largest left-right (L-R) displacement across
the cohort. Cardiac substructure abbreviations are defined in the text.
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Overall, the largest intra-fraction displacement occurred in the Superior-Inferior axis as shown in Table 1 (right)
and Figure 1 (above)

3.2+2.7 3.8%+25 8533 9.8%134

Maximum displacements of greater than 5 mm [2] were found for 24.8%, 8.5%, and 64.5% of the cases in the 53141 26+12 7.8+3.7 9.8+4.1

L-R, A-P, and S-I axes, respectively + Patient 9 (Figure 2, right) exhibited the largest substructure displacements in the L-R axis

LADA 3.0+15 4.1%+13 7.1+2.6 87125 (contrary to the S- tendency)

10/13 structures had median intra-fraction centroid displacements equal to or greater than 5 mm in the S-1 axis
LMCA 5035 27+20 58+24 82+3.1

Table 1: Maximum displacement of individual cardiac
substructures over 11 patients throughout the respiratory cycle
in each cardinal axis (left-right (L-R), anterior-posterior (A-P),
and superior-inferior (S-1)) and vector displacements.

Maximum vector displacements ranged from 5-10 mm across all substructures (Table 1) * L-Rdisplacements for 12/13 substructures were >5 mm, up to 13.5 mm for the LADA

o Greatest for the IVC and the RCA (max displacements >15 mm) = Accounts for 8/9 L-R axis outliers shown in Figure 1 (FEd stars and dOtS)

o Least for the great vessels (i.e. the AA, SVC, and PA)

« For the S-1 axis, Patient 9 had displacements for all substructures > 5.0 mm and up to 8.7 mm.

The EE phase of the 4-dimensional
computed tomography (4DCT) was rigidly,
registered with the MRI and refined with
an assisted alignment surrounding the
heart for delineation

Substructure
Abbreviations:
Left/right ventricle
(LV/RV)
Left/right atria

13 cardiac substructures were contoured (LA/RA)

- . Pulmonary artery
O ontne Aot Patient 9 (left) received lung treatment of 60 Gy in
using the hybrid MRI/CT information* (PA) (left) g Y

Pulmonary vein ; 20 fractions and _had the largest changes in dose .
(PV) _— N N across phases with an average

CONCLUSIONS

* Further, dose to the substructures were evaluated » This work characterized the independent intra-fraction displacement of the cardiac substructures through the
between phases to show the differences across respiratory cycle
the breathing cycle

RESULTS

Substructure

Patient 9: Great Vessels

This has importance for possible cardiac substructure planning risk volume generation for patients who are unable to
comply with breath-hold conditions for thoracic cancer treatments

Future work to determine the dosimetric effect of sensitive cardiac substructure displacement in respiration is
warranted.
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Right coronary showing the dosimetric
artery (RCA) variation across respiratory

» Max dose of 3.2 = 2.9 Gy (range: 0.46 (PA)
to 9.05 Gy (RA)) across the substructures

» Mean dose change among substructures was
2.2 + 1.8 Gy

Great vessels and cardiac chambers had more
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and dose were exported for data analysis

displacement were calculated

s Maximum excursion between phases
};Jo and statistical analyses on substructure
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(LADA)

Left main coronary
artery (LMCA)

phases for the great vessels
(top) and the cardiac
chambers (bottom).
Substructure color gradient
transitions from dark to light
as the respiratory phases
pass from the 0% to the
70% phase, respectively.
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compared to the whole heart (red, Figure 3)

= Specifically, the SVC (blue in Figure 3, top)
had a mean dose difference of up to 5.4 Gy
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