Real-time Target Tracking in Fluoroscopy imaging using Unet with Convolutional LSTM
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To investigate the feasibility of tracking targets in 2D fluoro
projection images using a novel deep learning network.

Introduction

Radiation therapy, especially stereotatic body radiation therapy
(SBRT) is becoming a primary modality to treat early stage
non-small cell lung cancer (NSCLC). In SBRT, target
localization precision is crucial for the treatment outcome due
to the high fractional dose, tight PTV margin, and sharp dose
fall off outside PTV. Real time 2D fluoro images are typically
used to verify the tumor motion before SBRT treatments start.
Physicists and physicians usually review the fluoro images to
verify the target motion with reference to the PTV volume,
which is a very challenging task due to the overlapping of
anatomical structures in 2D projection images. As a result, the
verification process is subjective and very much dependent on
the experience of the clinicians. In this work, we proposed a
neural network model and demonstrated its ability to automate
the target localization in fluoro images. To our knowledge, this
is the first study to use purely a deep learning method to track
tumor motions in the 2D fluoro projection images.

Our model design, shown in Figure 1, aims to capture the
consistent motion of tumors by adopting several most
advanced techniques used in Video Object Segmentation
(VOS). Specifically, the model is trained by generative
methods, which consists of a generator and a discriminator.
The generator is a coarse-to-fine architecture design, which
has two Unets. Convolutional LSTM modules are introduced in
our network to account for the time correlation between
different frames of the fluoro images. The convolutional LSTM
modules introduce so-called attention mechanism to focus
more on essential temporal and spatial information in fluoro
images. Apart from this, every three phases of images are
combined together to track the current phase, as shown in
Figure 2. The loss function contains the adversarial loss, L1
loss, SSIM loss and I0OU loss, as shown in Equation 1. The
generative loss is from wGAN-GP as shown in Equation 2.
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The model was trained and tested using a digital X-CAT phantom to
demonstrate its feasibility since it provides the flexibility to adjust
parameters such as height, width, tumor diameter, position, and
respiration amplitude in X-CAT phantom. We conducted experiments
from two aspects. In massive samples scenarios, 170 phantoms of
different scales, tumor positions, sizes, and respiration amplitudes were
generated in X-CAT. Our model was trained, validated and tested using
110, 30, and 30 phantoms respectively. In the other experiment, another
100 phantoms were generated with fixed body and tumor sizes but
different respiration amplitudes to achieve the optimal performance on a
specific patient and investigate the effects of motion amplitude on the
tracking accuracy. In this dataset, the model was trained, validated and
tested using 40, 40, and 20 phantoms, respectively. The tracking
accuracy was quantitatively evaluated using intersection over union
(IOU) and centroid of mass difference (COMD).
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Figure 1. Overall Architecture of Our Network
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Figure 2. Structure of the Input

In massive sample scenarios, the 10U achieved 0.92 while
the COMD was 0.16 cm and 0.07 cm in vertical and
horizontal directions on average. Three selective
representative samples from our testing dataset are shown
in Figure 3. In specific patient scenarios, the IOU achieved
0.98 while the COMD was 0.03 and 0.01 cm in vertical and
horizontal directions. Results demonstrated the robustness
of our model against breathing variations. In Figure 4, we
plotted the vertical coordinate of tumor centroid in one
case

Figure 3. Results of cases in experiment of massive
sample scenarios: (a) tumors overlapped by heart (b)
tumors partially overlapped by ribs. (c) large tumors in the
lung. Red area indicates the tumor location identified by
the algorithm.
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Figure 4. Results for a specific patient scenario: plot of
vertical coordinate of tumor centroid

Conclusion

Our study showed the feasibility to use deep learning to
track targets in x-ray fluoro projection images without aid of
markers. The technique can be valuable for both pre- and
during-treatment real time target verification using fluoro
imaging in lung SBRT treatments.
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