

Method for optimizing MLC beam model parameters in RayStation[®] for VMAT deliveries

Jon Hansen, M. Belanger, A. Shepard, Sean P. Frigo Department of Human Oncology, University of Wisconsin–Madison, Madison, WI

INTRODUCTION

- Dose calculations for VMAT deliveries are sensitive to small changes in MLC beam model parameters that are considered difficult to assess with IMRT QA phantoms [1]
- While film and OSLDs can be used for end-to-end testing of clinical plans, this work utilized multiple calibrated ionization chambers with measurement uncertainty <1.5%.
- In RayStation[®] beam models, leaf tip width (LTW) is used to account for x-ray transmission through the rounded end of a multileaf collimator (MLC)
- Tongue-and-groove width (TGW) accounts for transmission along exposed leaf sides in an MLC-defined aperture
- In this work, LTW and TGW values were varied to optimize agreement between TPS calculations and ionization chamber measurements for representative VMAT plans

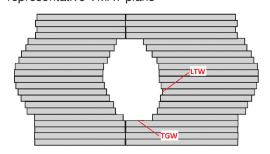


Fig. 1. LTW and TGW parameters in RayStation®

METHODS

- Analysis was performed for 6, 10, and 15 MV beams with an institutional Varian TrueBeam™ beam model in RayStation® v7
- LTW and TGW values were varied 0.00-1.00 cm and 0.00-0.25 cm, respectively, while all other model parameters remained fixed
- VMAT test plans included three anatomy-based plans (unilateral neck, chest wall, lung) and four geometry-based plans (off-axis target, C-shape, small and large cylinders) from TG-119 [2]
- Average dose was calculated for ROIs corresponding to ionization chambers placed within a cylindrical Solid Water® phantom
- TPS dose was compared to measurements using calibrated A1SL chambers at six positions within the high dose region. Corrections were made for accelerator output measured same-day following the TG-51 protocol [3]

RESULTS

- Fig. 2 shows percent difference between ionization chamber measurements and RayStation® calculations averaged over all plans as a function of LTW for each beam energy
- Fig. 3 shows corresponding data as a function of TGW for the same VMAT test plans
- Percent difference was found to trend linearly (dashed line) with larger calculated doses resulting from increasing LTW and decreasing TGW
- Point-wise disagreements up to 9.2% and 19.4% were observed for variations in LTW and TGW, respectively
- Optimized LTW and TGW parameter values for each beam energy ranged from 0.33-0.36 cm and 0.00-0.08 cm, respectively

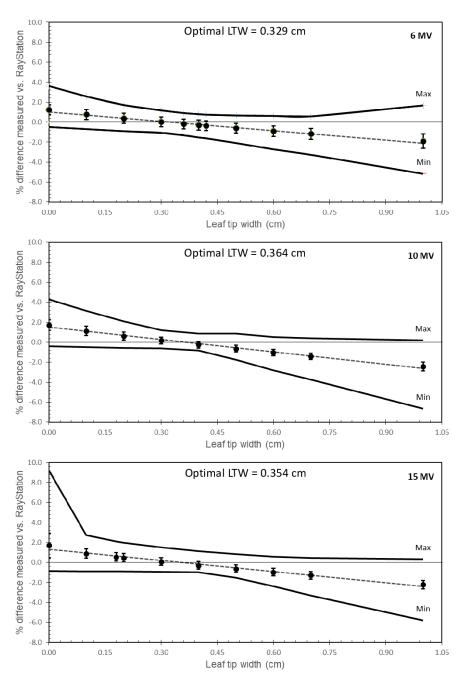


Fig. 2. Measured vs. calculated dose as a function of LTW for 6, 10, and 15 MV beams

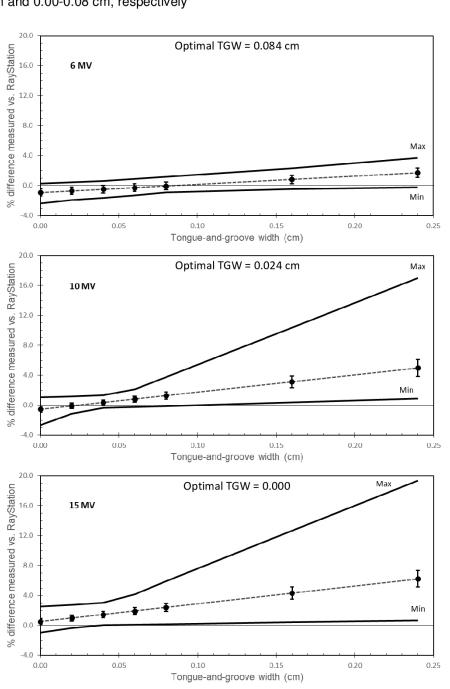


Fig. 3. Measured vs. calculated dose as a function of TGW for 6, 10, and 15 MV beams

CONCLUSIONS

- Based on results from a suite of VMAT test plans, the parameters LTW and TGW were optimized with high precision (±0.01 cm)
- Parameter values reported in this work should not necessarily be considered typical since they are specific to the beam model, treatment machine, and chosen test plans
- Nevertheless, the methods shown in this work can be used by other clinics to assess various parameters when creating a beam model for dynamic delivery in any treatment planning system

ACKNOWLEDGEMENTS

The authors thank Brendan Barraclough for technical insights into this work.

CONFLICT OF INTEREST

The authors have no relevant conflicts of interest to disclose for this work.

REFERENCES

[1] B. Koger, R. Price, D. Wang, D. Toomeh, S. Geneser, E. Ford. "Impact of the MLC leaf-tip model in a commercial TPS: Dose calculation limitations and IROC-H phantom failures." Med. Phys. 21(2) 2020.

[2] G. Ezzell, J. Burmeister, N. Dogan, T. LoSasso, J. Mechalakos, D. Mihailidis, A. Molineu, J. Palta, C. Ramsey, B. Salter, J. Shi, P. Xia, N. Yue, Y. Xiao. "IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119." *Med. Phys.* 36(11) 2009. [3] P. Almond, P. Biggs, B. Coursey, W. Hanson, M. Saiful Huq, R. Nath, D. Rogers. "AAPM TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams." *Med. Phys.* 26(9) 1999.

CONTACT INFORMATION

<u>jhansen9@wisc.edu</u> <u>frigo@humonc.wisc.edu</u>