The James

Image-guided Intra-Operative Radiation Therapy: Validating **Radiance Treatment Planning System**

THE OHIO STATE UNIVERSITY

A. Steinmann¹, S. Jain¹, A. Ayan¹, N. Gupta¹, J. Woollard¹

1. The Ohio State University, The James Comprehensive Cancer Center, Columbus, Ohio

INTRODUCTION

- Mobetron is used for intra-operative radiation therapy treatments (IORT).
- IORT current workflow typically consist of a guick hand calculation without a calculated treatment plan.
- In an effort to provide image-guided IORT (IG-IORT) IntraOp and GMV have, respectively, developed plastic cones for Mobetron and an electron Monte Carlo treatment planning software (Radiance).

AIM

• To validate Radiance with plastic cones measurements with the overall objective of potentially using these developments for IG-IORT treatments.

METHOD

• This study was a two-step process. First, determine dose calculation parameters and then, compare dose measurements between Radiance Treatment planning system and film.

- Radiance dose calculation parameters were optimized to best match our institution's PDD commissioning data for a single energy (6 MeV) and cone size (8cm).
- Ten scans were computed and compared with the commissioning data.
- · Various parameters were used to compare to OSU commissioning data (Table 1). These parameters were broadly divided in three categories: MC Algorithm, Contour, Density assignment

PDD Runs	MC Algorithm			Contou	r	Density Assignment			
	MC Het	MC Water	No Contour	Contour	Virtual Phantom	No Density	Water	Solid Water	
1		х	,	Х		Х			
2	X			Х		Х			
3		x		Х			х		
4	Х			Х			х		
5		х	Х			X			
6	Х		Х			Х			
.7		х		Х				x	
8	Х			Х				x	
9		x			x		х		
10	Х				Х		Х		

Table 1: A total of 8 different parameters were used in determining the plan that most closely represented OSU commissioning data.

Second Study:

- Dose measurements in solid water were made using plastic cones (10cm or 4cm).
- A total of 6 exposures were performed on the Mobetron system using either 6MeV, 9MeV or 12MeV energies. Each exposure was designed to deliver 400 MU at dmax.
- · Doses at four different depths were measured in a single exposure by placing EBT3 films inbetween the solid water slabs.
- Depths ranged from 11-24mm, 17-37mm and 20-36mm for 6MeV, 9MeV and 12MeV, respectively.
- Measured dose from EBT3 films were compared with Radiance calculated values using the parameters found in the first part of the study.

RESULTS

First Study:

Figure 1:

Radiance

Parameters. The

black line

represents OSU

commissioning

In generally

greatest

agreement was

shown at the

surface

- Ten scans were ran with different parameters (shown in Table 1)
- The percent differences at each integer depths were compared with commissioning data for each of the 10 different parameters (shown in Table 2).
- In generally, smaller variances between the scans were found near dmax.
- Larger variances were shown at the surface and at deeper depths (shown in Figure 1).
- Larger variances at deeper depths were seen due to the simple fact of comparing smaller values.
- The average percent difference for each run ranged from 1.1% to 5.3%.

1			3	4	5	6	7	8	9	10	variance	
_	7.9	5.4	7.7	8.0	8.4	6.1	6.6	7.9	5.9	7.7	1.1	
2	4.8	3.0	4.5	4.7	5.2	3.6	4.0	5.4	3.1	4.3	0.6	
3	3.5	1.5	3.5	3.0	3.8	2.4	2.7	3.8	3.6	2.3	0.6	
4	2.9	0.8	3.0	2.2	3.1	1.6	2.0	3.4	4.3	1.5	1.1	
5	2.1	0.9	2.0	1.8	2.0	1.2	2.0	2.9	4.0	0.8	0.9	
6	1.2	0.5	1.1	1.9	1.4	0.7	1.8	2.7	4.9	0.2	1.9	
7	1.0	1.3	1.0	1.5	1.2	1.5	1.4	3.0	5.1	0.5	1.8	
8	0.6	2.3	0.6	0.9	0.5	2.3	1.2	4.1	4.9	0.4	2.6	
9	0.3	1.9	0.0	0.5	0.1	2.0	1.0	4.5	5.0	0.4	3.3	
10	1.0	1.6	0.8	0.1	0.8	1.8	0.6	3.9	5.3	0.1	2.9	
11	1.0	0.9	1.0	0.3	1.1	1.1	0.3	3.6	5.5	0.0	2.9	
12	0.5	0.4	0.5	0.4	0.5	0.7	0.3	2.8	5.9	0.4	3.3	
13	0.6	0.3	0.6	0.0	0.5	0.5	0.4	1.6	5.7	0.5	2.8	
14	1.0	0.0	1.2	0.5	1.0	0.1	0.6	0.8	5.1	0.3	2.2	
15	1.2	0.3	1.5	1.4	1.5	0.5	0.4	0.3	5.2	0.0	2.3	
16	1.9	0.0	2.0	1.8	1.8	0.2	0.8	0.6	4.9	0.0	2.1	
17	2.4	0.1	2.5	2.0	1.8	0.0	0.8	2.0	4.1	0.3	1.7	
18	2.9	0.1	3.0	1.9	2.5	0.0	0.4	2.4	3.5	0.5	1.8	
19	2.6	0.2	2.6	1.9	2.1	0.6	0.3	2.6	3.5	0.3	1.5	
20	2.9	0.2	2.9	2.2	2.3	1.1	1.2	3.7	3.6	0.8	1.5	
21	3.2	0.8	3.4	2.6	3.6	1.1	1.9	4.5	2.3	1.7	1.4	
22	2.9	1.6	3.0	2.5	3.6	1.4	3.2	5.5	0.9	2.1	1.8	
23	4.2	0.5	4.4	3.0	4.4	0.4	3.4	5.9	1.0	3.1	3.5	
24	5.0	0.9	5.1	3.8	4.9	0.9	4.7	6.6	0.6	2.5	4.6	
25	4.9	0.3	5.0	3.6	4.4	0.5	8.1	8.6	0.8	0.9	9.5	
26	5.6	0.6	5.8	4.5	4.6	0.1	9.4	9.7	2.1	2.2	11.1	
27	4.7	0.3	5.0	5.0	4.2	0.1	11.2	11.6	5.3	2.6	15.0	
28	3.3	1.8	3.9	3.5	3.2	1.2	15.1	14.5	8.3	2.0	26.8	
29	4.7	2.1	5.2	3.3	4.5	2.1	18.3	14.9	9.7	3.9	31.6	
30	7.4	1.1	7.9	4.3	7.5	1.1	21.5	14.2	11.8	4.3	40.0	
AVG	2.9	1.1	3.0	2.4	2.9	1.2	4.2	5.3	4.5	1.5	6.1	

PDD RUN NUMBER

Table 2: Percent differences shown for each depth on each run. Average percent difference for a specific run is shown at the bottom. Percent differences ranged from 1.1% to 5.3%.

Second Study:

- Six irradiations using either 4cm or 10cm plastic cones were measured with EBT3 film and were compared to Radiance's predicted dose (Figure 2).
- The average percent differences between all energies was 3.9% (shown in Table 3).
- In general, lower energies had smaller percent differences than larger energies.
- The smallest percent difference was shown to
- The greatest percent differences was 14.2%.

Figure 2: Image of Radiance Treatment planning system which was used to compare between calculated and measured readings in solid water.

	I	Cone Sizes (cm)							
	Depth (mm)		4		10				
≥		Radiance	Film	% Diff	Radiance	Film	% Diff		
ләш 9	11	510.0	540.9	5.7	378.6	377.9	0.2		
	17	492.6	507.4	2.9	359.9	355.1	1.4		
	24	293.0	292.5	0.2	219.0	219.8	0.3		
	27	183.5	171.8	6.8	141.4	130.3	8.5		
9 MeV	Depth (mm)	Cone Sizes (cm)							
			4			10			
		Radiance	Film	% Diff	Radiance	Film	% Diff		
	17	565.1	564.7	0.1	379.4	369.3	2.7		
	27	493.5	482.3	2.3	334.7	343.1	2.5		
	37	249.5	219.9	11.9	169.2	184.2	8.9		
12 MeV		Cone Sizes (cm)							
	Depth (mm)		4			10			
		Radiance	Film	% Diff	Radiance	Film	% Diff		
	20	614.2	610.7	0.6	383.8	387.7	1.0		
	36	514.6	450.4	14.2	350.3	350.4	0.0		

Table 3: Percent differences between film and radiance are shown for each energy and for each cone size.

CONCLUSIONS

- Radiance parameters that most closely agree with commissioning data had an average percent difference of 1.1%.
- Generally, greatest variance was shown at greater depths (>25mm).
- Average percent difference between calculated and measured doses in solid water was 3.9%.
- Percent differences generally increased at deeper depths due to comparing small values.
- The measured output factor difference between the metal and plastic cones (up to 4.8% higher for metal cones) was accounted for in the percent differences comparisons.
- Dose calculated by Radiance agreed well with measurements in solid water, however, further validation is required for more complex phantom setups.

ACKNOWLEDGEMENTS

- IntraOp
- **GMV Innovating Solutions**

REFERENCES

- Grzetic, S., Hessler, J., Carlson, M., & James, A. G. (2015). SU-E-T-193: Commissioning of An IntraOp Mobetron. Medical physics, 42(6Part14), 3376-3376.
- Schonberg, R. G., Haynes, R. E., Haynes, S. E., Pollaczek, M. L., & Vaeth, J. M. (1994). U.S. Patent No. 5,321,271. Washington, DC: U.S. Patent and Trademark Office.
- Wootton, L. S., Meyer, J., Kim, E., & Phillips, M. (2017). Commissioning, clinical implementation, and performance of the Mobetron 2000 for intraoperative radiation therapy. Journal of applied clinical medical physics, 18(1), 230-242.

CONTACT INFORMATION

- Ahmet.Avan@osumc.edu
- Aksteinm@umich.edu