

Are all volumes of brain metastases suitable for Linac-based Stereotactic Radiosurgery?

C. Liu, S. Ahmed, T. Ma, Y. Cho, G. Neyman, J. Suh, and P. Xia

Department of Radiation Oncology, Cleveland Clinic, Cleveland OH, USA

INTRODUCTION

Linac-based stereotactic radiosurgery (SRS) for multiple brain metastases is gaining popularity because of volumetric modulated arc therapy (VMAT). A high degree of modulations in VMAT allows optimal dose conformity and sparing of organs-at-risk, producing similar plan quality as Gamma Knife (GK).^{1,2}

AIM

The purpose of this study is to investigate whether there is a limit of target volume below which VMAT-based SRS may not be suitable.

METHOD

- Twenty six patients with 2-3 brain metastases per patient previously treated with GK were re-planned using VMAT.
- A total of 76 targets with a median target volume of 0.75 cc (range: 0.01-17.68 cc).
- Prescription dose varying from 11-24 Gy.
- Single- or two-isocenter, multiple non-coplanar dynamic arcs in a 6MV flattening filter free mode with high-definition multileaf collimator (HD-120 MLC).
- All plans had >99% of each tumor volume receiving the prescription dose.
- Plan quality was evaluated based on RTOG conformity index (CI), Paddick gradient index (GI), normal tissue V_{12GV} and V_{4.5GV}.
- Receiver operating characteristic (ROC) curves associated with RTOG CI and normal tissue V_{12Gy} were employed to probe the cutoff target volume above which VMAT generated superior plans to GK.
- Wilcoxon signed rank test was used to compare the plan quality between GK and VMAT.

RESULTS

Figure 1 (a) RTOG CI as a function of target volume for GK and VMAT plans. The insert shows an enlarged view of target volumes between 0 and 1 with a cut-off volume of 0.4 cc. (b) ROC curve associated with RTOG CI and a table of statistics for selected thresholds. The cutoff volume of 0.4 cc corresponds to the blue dot on the ROC curve.

Figure 2 (a) Normal tissue V_{12Gy} as a function of target volume for GK and VMAT plans. The insert shows an enlarged view of target volumes between 0 and 1 with a cut-off volume of 0.4 cc. (b) ROC curve associated with normal tissue V_{12Gy} and a table of statistics for selected thresholds. The cutoff volume of 0.4 cc corresponds to the blue dot on the ROC curve.

	Target 1		Target 2		Target 3	
	GK	VMAT	GK	VMAT	GK	VMAT
RTOG CI	1.38	1.35	1.41	1.39	1.46	2.85
NT V _{12Gy} (cc)	3.7	1.64	3.62	2.41	1.49	2.28
GI	7.45	3.78	6.55	4.70	8.53	6.51
V _{4.5Gv} (cc)	17.2	10.47	16.70	15.94	7.29	16.26

Figure 3 Representative isodose distribution and plan quality comparison between GK and VMAT plans for patient with three targets. Target volumes for Target 1, Target 2 and Target 3 are 0.40 cc, 0.44 cc and 0.13 cc, respectively. Prescription was 24 Gy for all targets. Two-isocenter technique was used for the VMAT plan, where Target 1 was associated with one isocenter and the other isocenter was placed at the geometric center of Target 2 and Target 3.

CONCLUSIONS

Target volumes greater than 0.4 cc may be suitable for VMAT-based SRS with improved conformity and normal brain sparing while for volumes smaller than 0.4 cc, GK plans can be considered for achieving better overall plan quality.

	Target <0.4 cc			Target >0.4 cc			
	GK	VMAT	р	GK	VMAT	р	
RTOG CI	1.68	1.85	< 0.05	1.59	1.36	< 0.05	
NT V _{12Gy} (cc)	0.70	1.25	< 0.05	3.87	3.04	< 0.05	
GI	3.75	6.62	< 0.05	3.19	3.30	>0.05	
V _{4.5Gv} (cc)	2.58	6.82	< 0.05	17.55	16.04	< 0.05	

Table 1 Statistical comparison of plan quality endpoints between GK and VMAT plans. Median value was shown.

REFERENCES

- 1. Thomas EM et al. Plan quality and treatment planning technique for single isocenter cranial radiosurgery with volumetric modulated arc therapy. *Pract Radiat Oncol 2012;2:306-313*
- 2. Liu H et al. Plan Quality and Treatment Efficiency for Radiosurgery to Multiple Brain Metastases: Non-Coplanar RapidArc vs. Gamma Knife. Front oncol 2016;6:26

ACKNOWLEDGEMENTS

CL is supported by AVO and JS and PX received a research grant from AVO.

CONTACT INFORMATION

Ping Xia, xiap@ccf.org