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INTRODUCTION

Deep neural networks (DNN) are becoming a popular tool for automatic treatment planning in radiation therapy,
with promising results for VMAT and IMRT treatments [1,2]. These DNN models are able to predict the optimal
three-dimensional dose distribution for a given patient, by learning from a database of previously treated patients.
The output dose can later be used to automatically generate a treatment plan, removing all human intervention and
associated variability, which ensures high plan quality.

AlM

Proton therapy could greatly benefit from the power of DNN, especially nowadays, when the centers with
accumulated clinical experience in proton planning are very few and the number of new centers is growing. However,
the feasibility of DNN dose prediction for proton therapy remains to be addressed. The present work is the first to
investigate the use of DNN for dose prediction of scanned proton therapy for head and neck (H&N) cancer.

METHOD

Model architecture

The model is based on the popular UNet, a type of convolutional neural network able to include local and global
features from the input images, but including dense connections to achieve a more efficient feature propagation. The
details of the network has been described elsewhere [1, 2] and are shown in Figure 1. We used 14 input channels
including the CT, binary masks for CTV (voxel equal to the prescription dose) and 12 relevant organs (voxel equal to
1).
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Figure 1. Model architecture

Database

A set of 62 H&N cancer patients treated with pencil beam scanning, with the same beam configuration (4 beams),
was used for training (50 patients) and testing (12 patients). All plans were generated in RayStation v8a (RaySearch
Laboratories, Sweden), using robust optimization with 4 mm for setup errors and 3% for range errors. The
prescription dose was equal to 50Gy - 54.25Gy for the CTVlow, and 70Gy for CTVhigh.

Model training

The stability of the model was evaluated by using a 5-fold cross-validation (40 training patients and 10 for
validation). Right-left flipping of the images was used for data augmentation. All operations were done with a RTX
2080ti GPU of 11 GB dedicated RAM.
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Figure 2 shows the box plots for the average error on the mean dose for the different volumes. The volumes
with bigger error were the larynx, right parotid, right submandibular gland (SMG R) and trachea. Figure 3
shows the Dice coefficient values for the isodose lines. Overall the prediction matches the clinical dose with a
Dice similarity index above 0.9, but the 70-80% isodose region remains harder to predict, with a Dice that
decreases to 0.8. Figure 4 shows an example of the dose distributions for a selected patient.
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Figure 3. Dice similarity indices of the isodose volumes from 5% to 95% of the prescription dose (solid blue lines), together with their
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Figure 2. Box plots for the difference between the Dmean on the real dose and Dmean on the predicted dose e

for the CTVs and organs, expressed as percentage of the prescription dose for the CTVhigh, i.e., (Dmean_real -
Dmean_pred)/70Gy
Figure 4. Real and predicted dose distributions in the axial plane (left) and coronal plane (right) for a selected test patient
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