

Fully probabilistic optimization framework integrating uncertainty in clinical target volume definition

G. BUTI ¹, K. SOURIS ¹, A.M. BARRAGAN MONTERO ¹, J.A. LEE ¹ and E. STERPIN ^{1,2} 1 UCLouvain, Molecular Imaging – Radiation – Oncology (MIRO), Brussels, Belgium 2 KULeuven, Laboratory of Experimental Radiotherapy, Leuven, Belgium

INTRODUCTION

Considering the uncertainty of **microscopical tumor extension** in the target volume is of crucial importance in radiation therapy clinical practice:

- 1. **Clinical target distribution** (CTD) has been introduced for this purpose as a probabilistic alternative to the CTV [1]
- 2. Today, robust optimization that involves such a probabilistic target is lacking

AIM

- 1. To propose a realistic procedure to construct a probabilistic target (= CTD) from known microscopic tumor extension models
- 2. To develop a **fully probabilistic** robust optimization framework that includes the CTD together with other important treatment errors

METHOD

CTD construction

- 1. Randomly sample N microscopic tumor extensions (MTE)
- 2. For each MTE:
- 1. dilate the GTV isotropically
- correct for anatomical barriers (delineated as blocking structures (BS)) to generate the final target volume mask (TV)
- 3. Sum obtained TV masks and divide by N

Considered treatment uncertainties

	sigma	mu
Systematic setup (mm)	[2.4, 2.4, 2.4]	[0, 0, 0]
Random setup (mm)	[3, 3, 3]	[0, 0, 0]
Range (%)	1.6	0
MTE (mm)	2.8	3.4
Tumor motion	10 respiratory phases	

Optimization algorithms

The **fully probabilistic** method uses the CTD to calculate the expected value of the objective function over 220 considered error scenarios

Proposed method is benchmarked against **worst-case** robust optimization that uses the CTV as target volume in 114 error scenarios (= 19 systematic setup x 2 random setup x 3 range scenarios)

Optimization software: all methods were implemented in the open TPS MIROpt (uses Monte Carlo dose engine MCsquare) [3],[4]

RESULTS

Representation of the target:

Test case :

- · Lung tumor with motion
- · Mid-position (MidP) CT as nominal CT
- . IMPT treatment plan (co-planar beams at 90, 135, 180 gantry angles).
- 60 Gy dose prescription (30 fractions of 2 Gy)

Evaluation procedure:

Recompute the planned dose distribution on 250 evaluation scenarios using **MCsquare** dose engine [2]

Each scenario is randomly sampled combination of :

- 1. Systematic setup error (rigid isocenter shift)
- 2. Random setup error for each fraction (rigid isocenter shift)
- 3. Range error (CT density scaling)
- 4. Microscopic tumor extension (dilation of GTV) → target realization

For each scenario: the dose is computed on all respiratory phases and accumulated on MidP-CT

The target realizations are used to evaluate target coverage

Dosimetric results :

Fully probabilistic optimization improves target coverage and robustness (indicated target bandwidth at the D95 dose level Δ D95):

- worst case D95 increased by 1.4 Gy
- ΔD95 reduced by 2.4 Gy

Slightly increased OAR radiation with higher mean esophagus and mean lung dose (increase of 0.1 Gy and 0.4 Gy respectively)

CONCLUSIONS

clinical target volume blocking structures clinical target distribution

CTV

A **fully probabilistic** robust optimization framework is implemented and achieves promising results for a lung tumor case by improving robustness of the treatment plan

A procedure was proposed to construct a probabilistic target from a microscopic tumor infiltration model

The framework can be extended by introducing additional uncertainty sources in the target volume definition without increasing the computational cost

REFERENCES

- [1] N. Shusharina, D. Craft, Y.-L. Chen, H. Shih, and T. Bortfeld, "The clinical target distribution: a probabilistic alternative to the clinical target volume," Physics in Medicine & Biology, vol. 63, p. 155001, July 2018.
- [2] K. Souris, A. B. Montero, G. Janssens, D. D. Perri, E. Sterpin, and J. A. Lee, Technical Note: Monte Carlo methods to comprehensively evaluate the robustness of 4D treatments in proton therapy, Medical Physics (2019).
- [3] A. M. Barragan Montero, Miropt http://www.openmiropt.org/ Accessed November 2019.
- [4] K. Souris, MCsquare http://www.openmcsquare.org/ Accessed June 2019.

ACKNOWLEDGEMENTS

Gregory Buti is supported by the Télévie Grant from the Belgian 'Fonds National pour la Recherche Scientifique' F.R.S-FNRS.

CONTACT INFORMATION

Gregory Buti

gregory.buti@uclouvain.be

Social media

Follow MIRO lab on Twitter by scanning the QR code

