INTRODUCTION

Melanoma is a malignant disease caused by melanocytes, and its
incidence has been rising during the past decades. The recent
studies showed that immunotherapy can significantly increase the
patient survival rate and reduce the recurrence risk. However, it is
very difficult to predict the immunotherapy response (progress or
pseudoprogress). Since image features can capture more
information in a non-invasive way, it may be used to predict the
treatment outcome. Meanwhile, the recent studies shows that the
delta-radiomics can be used to predict treatment response more
accurately. As such, we developed an automated multi-objective
delta-radiomic (Auto-MODR) model to predict immunotherapy
response in metastatic melanoma. Auto-MODR not only takes
advantages of the feature differences between the pre-treatment
and one cycle post-treatment (known as delta-radiomic features),
but also utilized all the generated Pareto-optimal models which are
generated through multi-objective optimization. Besides, an
evidential reasoning (ER) strategy was used to fuse the output
probabilities of these generated Pareto-optimal models to obtain
more reliable results.
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To predict immunotherapy response (progress or pseudoprogress)
in metastatic melanoma by developing a new reliable automated
multi-objective delta-radiomic (Auto-MODR) model.
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METHOD

Train stage

The training stage employs multi-objective optimization to get the Pareto-optimal model set. The aim is to
maximize the sensitivity f,.,, and specificity f;,, simultaneously, that is f = max,g(fien fpe). We used
iterative multi-objective immune algorithm (IMIA) to conduct feature selection and model training.
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Figure 1. Auto-MODR workflow.

Test stage

The testing stage consists of weight calculation and ER based fusion. To obtain the balanced outcome, the
model with non-zero weights represents a good balance between sensitivity and specificity, while a model
with zero weight is extremely imbalanced (figure 2). Then the selected features feed into the models with
non-zero weights. Finally, the output probability is obtained by using ER to combine the output probabilities of
these models. The label with the maximal output probability is the final label.
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Figure 2. Pareto-optimal model with two type weights
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RESULTS

Sensitivity Specificity
Figure 3 shows sensitivity, specificity, accuracy and 0 ve o4 ce os o 02 94 o0 og
area under the receiver operating characteristic
curve (AUC) for different feature combinations. It
can be seen that sensitivity, specificity, accuracy
and AUC have increased a lot when combining the e o P> I R e M
delta-radiomic features and traditional radiomic
features. Particularly, the one-cycle post-treatment
radiomic features coupled with delta-radiomic Accuracy AUC
features achieved the best performance, with AUC 2 0z 04 05 08 0 02 04 06 08
of 0.829. However, the model that only used one- orercatmon|  — pre reatment  I——
cycle post-treatment radiomic features yielded AUC ono-oysis postiroctmont — one cyclo post freatmen  —
of 0.728. Combining delta-radiomic features with pre-reaimen: and one-ryoe PO e — pre-ireatment and one-cycle  ——
traditional radiomic features, the experimental
results ShOWS that AutO_MODR can Slgnlflcantly WO delta features VW dalta features VWO della lealures Wdella lealures
improve the predictive performance.
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Figure 3. Results of using traditional features (non-delta) only versus

Tables 1 compared Auto-MODR with traditional multi- traditional features combined with delta features.
objective model (MO) and traditional single-objective Table 1. Result of different models for post-treatment features with delta features

model (SO-AUC). Auto-MODR outperforms SO-AUC | Model | AUC | Accuracy | Sensitivity | Specificity | p-value |
in higher AUC, accuracy and sensitivity. Meanwhile, SO-AUC 0.749 0.683 0.606 0.75 <0.0001
Auto-MODR performs better than MO in all MO 0.799 0.704 0.705 0.702 <0.0001

svakiatan matrics. Auto-MODR  0.829 0.752 0.778 0.73 <0.0001

CONCLUSIONS

We developed a new automated multi-objective delta-radiomic (Auto-MODR) model for predicting immunotherapy response (progress or
pseudoprogress) in metastatic melanoma. The experimental result demonstrated that the best performance can be obtained when combining the
traditional radiomic features with delta-radiomic features.
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