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- Monitoring fiducial marker locations using « The monitoring system had a mean error of -0.1+0.5mm « The [1st, 99th] percentiles of the error were [-1.6, 0.9] mm in the x- « We present the first application of a CNN classifier in a
beam’'s-eye-view images is ideal as it and -0.10.6mm in the x- (lateral, anterior/posterior) and y- direction, and [-2.0, 1.3] mm in the y-direction. real-time monitoring system for fiducial markers in
e"m.'”atestthe d“eed .f(‘j’r afd'tmt”.""f'mag'tf‘g . E,S:?gpe;g’)” inferior) directions of the MV images, respectively 0 o ccifier had a sensitivity of 98.31% and specificity of 99.87%. beam’s-eye-view images.
tehqeu:-irgsetr:mar:)rtzg?-lf:-a?se ao;g;fleceor:-;a ;ﬁ; In ’ ’ The area under the PRC plOt (AUC) of the classifier was 0.99 (Flg 38) . Monitoring using beam’s_eye_view images can reduce
view of the t?eatment hiam ) (@) (b) 1 ‘ the need for kilovoltage imaging during the treatment,

' ﬁ x-direction: ;1 = -0.08, o = 0.51 *  Ground fruth hence lowering the patient's imaging dose.

« Furthermore, the additional imaging dose from || e y-direction: p = -0.10, = = 0.62 *  CT projection . R
real-time fluoroscopic monitoring is high and 0.8 - 08¢ » _CNN dstection = _The high classification periommance on Unseen My
cah be URaccantable.! ' ' images demonstrates that the classifier can successfully

P ' identify fiducial markers during different VMAT
« However, accurate tracking is challenging for c 0.6 >06" treatments.
VMAT treatments due to low contrast and MLC % ’ E '
leaves occluding markers. ] <
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. Current common marker segmentation & 04 504 The sub-millimetre accuracy and precision of
methods typically use template matching the marker tracking system demonstrates that
approaches .23 it can be feasibly used for real-time

0.2 0.2 monitoring applications.
. AUC = 0.99, Sensitivity = 98.31%,
We present a novel beam’s-eye-view Specificity = 99.87%
fiducial marker monitoring system 00 0‘2 0'4 05 0‘8 1 0_4
based on a convolutional neural ' ' ' '
‘g Recall Error (mm)
network (CNN) classifier. REFEREN CES
Figure 3. (a) Precision-recall curve (PRC) plot of the CNN classifier performance, (b) Probability Distribution Function (PDF) of the error between the

CNN tracking and ground truth in the x- and y-directions, (¢) Example CNN monitoring compared to the CT projection position and ground truth.
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The real-time tracking performance of the system was enabled by biasing the
search region using the known 3D locations of the markers acquired from the
A real-time multiple object tracking system based on a CNN classifier was developed for intrafraction patient's CT (Fig. 1).
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We trained and validated the classifier using labelled MV images of prostate cancer
Generate search regions Perform sliding window patients with implanted fiducials undergoing VMAT treatments (Fig. 2). The
using CT projection positions classification using CNN monitoring system accuracy was compared with manual identification.
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Figure 1. Schematic of the automated CNN marker monitoring workflow. Figure 2. Overview of the method and datasets utilised.

v


http://www.tcpdf.org

