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INTRODUCTION RESULTS | CONCLUSIONS

For the MC simulations of CT imaging doses, MCDNet is found to have the

Monte Carlo (MC) simulation is the most accurate method for 1) Dose calculation in CT[1]

lculating x-ray i i ith the patient’ - . bility of predicting d f 9.9x107 photons f ding d
calculating x-ray interactions with the patient's body and voxe 5 full-body anatomically realistic adult voxel phantoms of various sizes. ability of predicting dose maps o photons from corresponding dose

5 - L
Low-photon dose maps: 1.6x10%, 1.6x10%, 1.6x108, 1.6x107 photons (input) maps of 1.3x10° photons, yielding a 76x speed-up in terms of photon

wise dose distributions. However, the large number of photons

need to be simulated for MC dose calculation in CT and numbers. When the low-photon dose maps are generated with very few

Abdomen

High-photon dose maps: 1.6x10° photons (ground truth)

radiotherapy to achieve acceptable statistical uncertainty photons, MCDNet is not convergent due to insufficient training information.

Testing results are shown in Table 1 and Fig. 2.

MC + MCDNet

(nearly noise-free dose maps), requiting MC methods to be . . .
For the MC simulations of IMRT, the MCDNet can improve the GIPR of dose

maps of 1x107 photons over that of 1x108 photons, yielding over 10x speed-

. . - , 2) Dose calculation in radiotherapy [3]
accelerated to a level suitable for clinic applications. This paper

reports a recent study to reduce the statistical uncertainty 30 rectal cancer patients with intensity-modulated radiation therapy (IMRT)

[MeV/g/photon]

. i up in terms of photon numbers.
using a novel deep-learning based “denoising” approach [1]. Low-photon dose maps: 1.0x107 photons (input) P P

High-photon dose maps: 1.0x10'° photons (ground truth)

Testing results are shown in Table 2 and Fig. 3
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To train a convolutional neural network (CNN), called Monte
Carlo Denoising Net (MCDNet) [1], to directly predict the high-

MC + MCDNet

noise) dose maps obtained from MC dose calculations in CT

MC simulations Fig. 2. The original MC simulated dose maps and MCDNet predicted dose maps for
CT using the RP! female phantom as an example. Each column represents dose
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Table 2. GIPR for MC simulations and MCDNet predictions in radiotherapy

0'9153 0'9399 None 0.9?20 Fig. 3. The dose maps in the radiotherapy predicted by MCDNet and simulated by

0.0157 0.0001 0.0130 MC with a different number of photons. The edge slices (first row) and center slices CO NTACT I N FO RM ATl ON

Fig. 1. The proposed MCDNet structure (second row) are shown separately.
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