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INTRODUCTION

Automatic prostate bed target segmentation based on cone-beam CT
(CBCT) imaging is important for adaptive therapy, but is extremely
challenging. This is mainly because the soft-tissue contrast of the CBCT
images is low and prostate bed targets are inferred geometries with large
appearance variations. The implicit mapping between a planning CT and
its associated prostate bed (PB.;) contour could provide useful prior
information in a convolutional neural network for generating CBCT
prostate bed (PB,) contours. In this study, we proposed a novel 3D
multi-path DenseNet for automatically generating the PB.; contour
from the image triplet (CBCT, CT, PB). We hypothesized that a multi-path
architecture, where each image has its own set of encoding filters, could
achieve better segmentation performance than the single-path
architecture, where all images share the same encoding filters, by
capturing the image-specific features.

METHOD

Dataset

* 17 prostate cancer patients who received 5-fraction stereotactic body
radiation therapy after radical prostatectomy

* Each patient had one planning CT and five daily set-up CBCT images
* CBCT images were rigidly aligned with the planning CT

* Prostate bed contours on CT images (PB.;) and CBCT images (PB )
were drawn by an experienced oncologist

* All images and contours were resampled to 2.5 x 2.5 x 2.5 mm? and
cropped to a final dimension of 240 x 240 x 64

* Each patient has five image triplets (CBCT, CT, PB;)
Single-path and multi-path DenseNets for segmentation

* Figure 1 shows the architecture of a 3-layer dense block used in the
proposed 3D DenseNets.

* Figure 2 shows the architecture of the 3D single-path DenseNet

* Figure 3 (A) shows the architecture of the 3D multi-path DenseNet.
The encoded feature maps from three different paths were concatenated
and then fused by squeeze-and-excitation blocks (SEB) as shown in Figure
3(B)
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Figure 1. The architecture of the dense block. IN, instance normalization layer; Relu, rectified
linear unit layer; Conv, convolutional layers.
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Figure 2. The architecture of the 3D single-path DenseNet. DB, dense block shown in Figure 1;
Deconv, deconvolutional layer.
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B. Squeeze-and-Excitation Block (SEB)
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Figure 3. (A) The architecture of the 3D multi-path DenseNet. (B) The architecture of the
squeeze-and-excitation blocks (SEB).

* The number of convolutional filters was set to ensure the single-path
DenseNet has a similar number of trainable parameters as the multi-path
DenseNet.

* 3D UNet! was constructed for model comparison

Model training

* The patient cohort was randomly split into a training set of 12
patients, a validation set of 2 patients, and a testing set of 3 patients

* The Adam stochastic gradient descent method was used to minimize
the Dice loss

* A batch size of 1 was used for training

* The initial learning rate and the stopping epoch number were tuned
using the validation set

Model evaluation

* Trained models were applied to 15 image triplets of the testing
patients to generate their autosegmented PB 7 contours

* Model performance was evaluated using Dice similarity coefficient
(DSC)

* Friedman test for repeated measures and Wilcoxon signed-rank tests
were conducted to compare the model differences
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Figure 5. 3D shape of the ground truth and predicted PB . contours generated by three models

Model UNet Single-path Dense | Multi-path Dense
Dice 0.780+0.065 0.814+0.068 0.83710.073
Parameters # (*105) 4.77 0.38 0.36

Table 1. Statistics of the Dice coefficient and the number of trainable model parameters for three models.

Results are averaged across 15 testing image triplets.

Friedman Wilcoxon
UNet vs UNet vs Single-path vs
Single-path Multi-path Multi-path DenseNet
DenseNet DenseNet
P-value| <0.01 0.04 <0.01 <0.01

Table 2. Statistical test results. A p-value of <0.05 is considered significant in the Friedman test. A p-value of

< 0.0167 is considered significant in the Wilcoxon sign-rank test as per the Bonferroni correction.

RESULTS

* Figure 4 shows shows the transverse slices of the co-registered CT
and CBCT images along with the corresponding ground truth PBCBCT
contour

* Figure 5 shows the ground truth PBCBCT contour and generated
PBCBCT contours of a single fraction for the two testing patients

* Table 1 summarizes DSC statistics and the number of model trainable
parameters

* Table2 summarizes the results of the statistical tests

Figure 4. Transverse slices of the co-registered CT and CBCT images along with ground truth
PB g contours for the example patient.

CONCLUSIONS

Our proposed 3D multi-path DenseNet generated PB - contours with the
highest clinical agreement. Statistical tests indicated significant differences
between the multi-path DenseNet and the 3D UNet or single-path DenseNet.
This pilot study demonstrates the promise of using the multi-path DenseNet
for online contouring in an adaptive workflow. More patient data needs to be

acquired to examine model robustness.
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