

Automatic prostate bed target segmentation on daily conebeam CT image using a 3D multi-path DenseNet

Co Cedars Sinai

UCLA Health

<u>J. Fu</u>¹, S. Yoon¹, A.U. Kishan¹, K. Singhrao¹, Z. Wang¹, J.H. Lewis², and D. Ruan¹

1. University of California, Los Angeles, Los Angeles, CA 2. Cedars-Sinai Medical Center, Los Angeles, CA, USA

INTRODUCTION

Automatic prostate bed target segmentation based on cone-beam CT (CBCT) imaging is important for adaptive therapy, but is extremely challenging. This is mainly because the soft-tissue contrast of the CBCT images is low and prostate bed targets are inferred geometries with large appearance variations. The implicit mapping between a planning CT and its associated prostate bed (PB_{CT}) contour could provide useful prior information in a convolutional neural network for generating CBCT prostate bed (PB_{CBCT}) contours. In this study, we proposed a novel 3D multi-path DenseNet for automatically generating the PB_{CBCT} contour from the image triplet (CBCT, CT, PB_{CT}). We hypothesized that a multi-path architecture, where each image has its own set of encoding filters, could achieve better segmentation performance than the single-path architecture, where all images share the same encoding filters, by capturing the image-specific features.

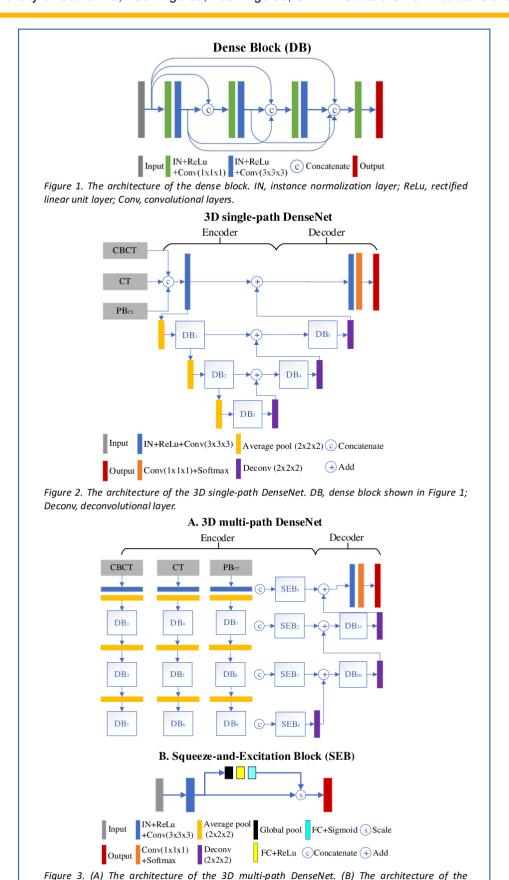
METHOD

Dataset

- 17 prostate cancer patients who received 5-fraction stereotactic body radiation therapy after radical prostatectomy
- Each patient had one planning CT and five daily set-up CBCT images
- CBCT images were rigidly aligned with the planning CT
- Prostate bed contours on CT images (PB_{CT}) and CBCT images (PB_{CBCT}) were drawn by an experienced oncologist
- All images and contours were resampled to 2.5 x 2.5 x 2.5 mm 3 and cropped to a final dimension of 240 x 240 x 64
- Each patient has five image triplets (CBCT, CT, PB_{CT})

Single-path and multi-path DenseNets for segmentation

- Figure 1 shows the architecture of a 3-layer dense block used in the proposed 3D DenseNets.
- Figure 2 shows the architecture of the 3D single-path DenseNet
- Figure 3 (A) shows the architecture of the 3D multi-path DenseNet. The encoded feature maps from three different paths were concatenated and then fused by squeeze-and-excitation blocks (SEB) as shown in Figure 3 (B)



squeeze-and-excitation blocks (SEB)

- The number of convolutional filters was set to ensure the single-path DenseNet has a similar number of trainable parameters as the multi-path DenseNet
- 3D UNet¹ was constructed for model comparison

Model training

- The patient cohort was randomly split into a training set of 12 patients, a validation set of 2 patients, and a testing set of 3 patients
- The Adam stochastic gradient descent method was used to minimize the Dice loss
- A batch size of 1 was used for training
- The initial learning rate and the stopping epoch number were tuned using the validation set

Model evaluation

- Trained models were applied to 15 image triplets of the testing patients to generate their autosegmented PB_{CBCT} contours
- Model performance was evaluated using Dice similarity coefficient (DSC)
- Friedman test for repeated measures and Wilcoxon signed-rank tests were conducted to compare the model differences

RESULTS

- Figure 4 shows shows the transverse slices of the co-registered CT and CBCT images along with the corresponding ground truth PBCBCT contour
- Figure 5 shows the ground truth PBCBCT contour and generated PBCBCT contours of a single fraction for the two testing patients
- Table 1 summarizes DSC statistics and the number of model trainable parameters
- Table 2 summarizes the results of the statistical tests

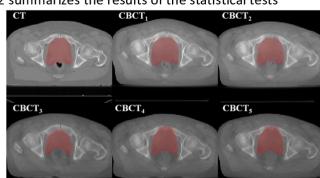


Figure 4. Transverse slices of the co-registered CT and CBCT images along with ground truth PB_{CBCT} contours for the example patient.

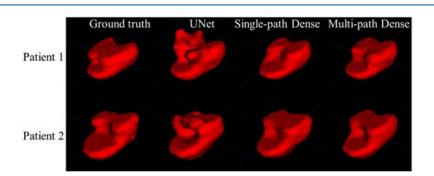


Figure 5. 3D shape of the ground truth and predicted PB_{CBCT} contours generated by three models

Model	UNet	Single-path Dense	Multi-path Dense
Dice	0.780±0.065	0.814±0.068	0.837±0.073
Parameters # (*10 ⁶)	4.77	0.38	0.36

Table 1. Statistics of the Dice coefficient and the number of trainable model parameters for three models. Results are averaged across 15 testing image triplets.

	Friedman	Wilcoxon				
		UNet vs Single-path DenseNet	UNet vs Multi-path DenseNet	Single-path vs Multi-path DenseNet		
		Densenet	Denselvet			
P-value	<0.01	0.04	<0.01	<0.01		

Table 2. Statistical test results. A p-value of <0.05 is considered significant in the Friedman test. A p-value of <0.0167 is considered significant in the Wilcoxon sign-rank test as per the Bonferroni correction.

CONCLUSIONS

Our proposed 3D multi-path DenseNet generated PB_{CBCT} contours with the highest clinical agreement. Statistical tests indicated significant differences between the multi-path DenseNet and the 3D UNet or single-path DenseNet. This pilot study demonstrates the promise of using the multi-path DenseNet for online contouring in an adaptive workflow. More patient data needs to be acquired to examine model robustness.

ACKNOWLEDGMENT

This research was funded by Varian Medical Systems, Inc.

REFERENCES

 Ö. Çiçek et al. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science, vol 9901. Springer, Cham

CONTACT INFORMATION

jiefu@mednet.ucla.edu