

Brachytherapy workflow for locally advanced cervical cancer: A survey of Canadian Medical Physicists

G. MENON^{1,2}, L. BALDWIN^{1,2}, B. BURKE^{1,2}, and A. HEIKAL^{1,2}

- 1 Division of Medical Physics, Cross Cancer Institute, Edmonton, AB, Canada
- 2 Department of Oncology, University of Alberta, Edmonton, AB, Canada

INTRODUCTION

- > Recently, several enhancements have been made to the brachytherapy (BT) treatments of locally advanced cervical cancer
- > use of MRI during planning for better soft tissue contrast
- > innovative applicator designs and use of interstitial catheters
- > guidelines/recommendations for BT planning and delivery¹⁻³
- > use of equivalent radiobiological dose for BT dose calculation Many Canadian centres are gradually implementing these changes
- into routine practice.
- > This survey was undertaken to gauge the differences in CC-BT practices in Canada.

AIM

To report on the patterns of practice and workflows for CC-BT treatments in Canada from a physicist's perspective.

METHOD

- > Participants:
- > Medical physicists in 33 Canadian cancer centres were contacted between December, 2019 and February, 2020:
- > 21 participated; representation from all provinces
- > 8 offered no CC-BT
- > 4 did not respond
- > Survey on CC-BT workflow:
- > 44-item electronic questionnaire > surveyed questions included details of:
- > External beam radiotherapy (EBRT) dose & fractionation
- > BT equipment: afterloaders & treatment planning systems > BT patient workload
- > BT imaging to aid applicator insertion, contouring, & planning
- > BT planning: personnel involved, dose & fractionation, planning strategy
- > Descriptive analyses was used to evaluate the data.

RESULTS

Table 1: Details of BT afterloaders and treatment planning software (TPS)

	Vendor	Model	# of centres
Afterloaders	Elekta	Flexitron	6
		microSelectron	6
	Varian	VariSource	2
		GammaMed	6
	Eckert & Ziegler BEBIG	MultiSource	1
Treatment planning systems	Elekta	Oncentra	12
	Varian	BrachyVision	8
	Eckert & Ziegler BEBIG	HDR plus 3 & SagiPlan	1

Table 2: BT dose-fractionation regimens used by the respondents following EBRT treatment of 45 Gy in 25 fr (n=20) or 46 Gy in 23 fr (n=1)

Afterloader type	Fractions (HDR) or Pulses (PDR)	Planning aim dose per BT fraction or pulse (Gy)	# of centres	Total planning aim dose (EQD2 ₁₀)
	3	8	2	36.0
	3	9.5 – 10	1	46.3 – 50.0
	4	6	1	32.0
HDR	4	7	13	39.7
	4	7.75	1	45.9
	5	6 – 7	1	40.0 – 49.6
	6	4.6	1	33.6
PDR	58	0.73	1	46.1

Table 3: Imaging modalities used to assist applicator insertion and for planning

Table 3: Imaging modalities used to assist applicator insertion and for planning				
	Imaging modality	# of centres		
	US only	14		
During applicator insertion in	US & CT	1		
the operating room	US, MRI, & C-arm	1		
	CT & C-arm	1		
	None	4		
	MRI (for contouring & planning)	4		
For contouring and planning	MRI (for contouring) & CT (for planning)	8		
For contouring and planning	CT (for contouring & planning)	8		
	CBCT	1		

Figure 1: Techniques and vaginal components used. IC: Intracavitary, IS: Interstitial > n = 9 centres performed

- IC/IS treatments for 25 -75% of their patients.
- Most common vaginal components used with the tandem were ring and ovoids.
- n=10 centres used ≥ 2 vaginal components including the lunar ovoids (Venezia) and cylinders.
- Figure 2: Contouring responsibilities and software used. RO = Radiation Oncologist, RTT = Radiation therapist / Dosimetrist / Dedicated brachy therapist, MP = Medical Physicist
- > Targets were contoured (always by ROs) only by centres performing volume-
- 10 centres used a separate software to contour (mostly when using MR images) while catheter reconstruction proceeded concurrently on the BT TPS.
- Figure 3: Clinical responsibilities during and after treatment.
- > During treatment delivery, a multi-disciplinary team is typically present
- Applicator removal is usually done by ROs, but both trained RTTs and nurses may take on this responsibility.

PLANNING VARIANCES

- > 15 centres performed volume-based planning and 6 used prescription to Pts A.
- > Contoured structures included:
- > Targets: GTV-B, CTV-HR, CTV-IR
- > Organs-at-risk (OARs): bladder, bowel, rectum, sigmoid
- > 4 centres, doing Pt A based planning, contoured only the OARs.
- > 12 centres use MRI for contouring the first fraction of insertion 1.
- > Insertion 2 or higher were mostly based on CT; only 4 centres used MRI > Planning process began with standard loading followed by manual/graphical
- optimization > n=2 used inverse planning.
- ▶ Planning was done either by physicists (n=12) or with assistance from BT dosimetrists/RTTs (n=7).
- Most common HDR dose-fractionation schedule was 7 [4.6 − 10] Gy in 4 [3 − 6] fractions aiming for a total median radiobiological CTV-HR dose (calculated in n=14 centres) of 85 [80 - 95] Gy₁₀.
- > Typical planning times (including contouring, catheter reconstruction, and planning) was 2.00 [0.33 - 4.00] hours.
- > Quality assurance following plan acceptance:
- > Manual second check: n = 13 by another physicist, n = 1 by an RTT, n = 7 had no
- > Using another software: RadCalc (12), in-house (6), None (3)

CONCLUSIONS

- > This work will inform the Canadian brachytherapy community of the changes and trends in the brachytherapy treatment of locally advanced cervical cancer.
- It shows the migration towards MRI-based volumetric treatment planning, personalizing BT treatments using hybrid intracavitary (IC)/interstitial (IS) applicators, and the adoption of international treatment guidelines (e.g. Embrace II) as standard of practice.
- Cervical cancer brachytherapy in Canada is becoming more streamlined with use of international practice guidelines.

REFERENCES

- ICRU Report 89: Prescribing, recording, and reporting brachytherapy for cancer of the cervix. J ICRU 2013:13:1-258
- https://www.embracestudy.dk/UserUpload/PublicDocuments/EMBRACE%20II%20Protocol.pdf
- Viswanathan et al. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Brachytherapy 2012, 33-46 & 47-52

ACKNOWLEDGEMENTS

The authors are thankful to all the medical physicists who participated in this survey.

CONTACT INFORMATION

geetha.menon@albertahealthservices.ca

ESTRO, QUANTEC, CCO, & ABS.

- 15 centres followed the EMBRACE guidelines; > other guidelines used were from RTOG, GEC-
- ii. 2 centres used in-house guidelines.

PLANNING GUIDELINES FOR EBRT & BT

- WORKLOAD
- Number of BT procedure days/week: > 1.75 [1 – 5] days
- Number of patients/procedure day: > 2 [1 − 3]
- Overall treatment times, including EBRT, was 50.5±5.6 days.