

Physical characteristics of annihilation and related background photons produced in X-ray irradiation with medical linear accelerator

K Takahashi*1, T Hanada², H Miyauchi^{1,4}, Y Tanaka¹, M Hashimoto³ and T Hasegawa³

- 1 Graduate School of Medical Sciences, Kitasato University, Kanagawa, Japan
- 2 Department of Radiology, Keio University School of Medicine, Tokyo, Japan
- 3 Faculty of Allied Health Sciences, Kitasato University, Kanagawa, Japan
- 4 Cancer Institute Hospital of JFCR, Tokyo, Japan

BACKGROUND & OBJECTIVE

- ☐ In external X-ray irradiation by a medical linear accelerator (LINAC), annihilation photons are generated by pair production. From literature, for using annihilation photons produced in X-ray irradiation, the annihilation photon peak is not visible in the energy spectra measured with coincidence pairs of scintillation detectors, because of additional background radiations^[1,2].
- ☐ In this study, to investigate the effective detection and use of annihilation photons, we analyzed the physical characteristics of the detected photons with a focus on the background components.

METHODS

◆ EXPERIMENT

- ☐ Targeted LINAC: TrueBeam (Varian Medical Systems)
- ☐ Phantom (Thickness: 20 cm, water equivalent) was placed at the isocenter.
- ☐ A pair of scintillation detectors was placed in the opposite
- ☐ LINAC was operated at 10 and 6 MV X-ray mode with several field sizes (1 cm \times 1 cm to 10 cm \times 10 cm) and dose rates (100 to 600 MU/,min).
- ☐ The energy spectrum was obtained from the irradiation.
- A ¹³⁷Cs source was placed near the detector in the beam irradiation to measure the pulse measurement.

◆ SIMULATION

- Monte Carlo (MC) simulation code: Geant 4 Ver. 10.3.
- ☐ A primary collimator, X-ray target, flattening filter and jaws of LINAC (TrueBeam), couch, and floor were modeled.
- ☐ X-rays were produced by simulating electron beams impinging on the X -ray target, and by using IAEA-formatted phase-space files.
- ☐ The simulation results of percentage depth dose (PDD) and offaxis ratio (OAR) were compared with actual data to confirm the consistency of the simulation.
- MC simulation was used to investigate the physical characteristics of the annihilation and related background photons.

RESULTS

◆ EXPERIMENT

- ☐ Figure 2 shows the energy spectra from 6- and 10-MV Xray irradiation as well as ¹³⁷Cs source measurements with 10-MV X-ray irradiation.
- ☐ A peak structure was identified at 500 keV in the energy spectra from the 10-MV x-ray irradiation.
- ☐ The signal to background ratio around the 500-keV peak was slightly improved in a smaller field size.

Figure 2 Energy spectra from 10- and 6-MV X-ray irradiations, and ¹³⁷Cs source

☐ The dose rate dependence of the measured count rates was approximately linear (Figure 3)

Figure 1 Simulated LINAC geometry consisting of target, primary collimator, jaws, couch, floor and detectors.

☐ The count rates in the <10-MV and around 500 keV showed a dependence on the field size (Fig .4).

Figure 4 Measured field size dependence of count rates.

◆ SIMULATION CONSISTENCY

- A PDD field size of 10 cm is consistent (in 1%) with measurement for 99% confidence interval.
- ☐ An OAR's depth of 5 cm to 20 cm is consistent (in 2%) with measurement for 95% confidence interval.

◆ 2-D DISTRIBUTION

Figure 6 (a) Simulated LINAC geometry and (b) simulated distribution of source positions for the detected photons.

- ☐ Figure 6 shows simulated geometry and the distribution of source positions of detected photons obtained by the MC simulations.
- ☐ Most background photons from the LINAC head were emitted from the edge of jaws.
- ☐ The measured energy spectra included the background contribution that was not simulated in this study.

CONCLUSIONS

- We observed a peak structure around 500 keV in the measured energy spectrum from X-ray irradiation of medical LINAC.
- Regarding the physical characteristics of the annihilation and related background photons, we obtained **details about** its emission and distribution.

ACKNOWLEDGEMENTS

- This work was supported by JSPS (Japan Society for the Promotion of Science) KAKENHI Grant Number JP 17K16484.
- We would like to thank Ryosuke Ota and Tomohide Omura (Hamamatsu Photonics).

REFERENCES

- 1 T. Kormoll et al. In-Vivo Dosimetry for Photon Radiotherapy Based on Pair Production. IEEE Transactions on Nuclear Science, vol. 57, 2010; 1125-1131
- 2 F. Geser, A et al. A framework for e+ e- annihilation detection using nano-particles for tumour targeting in radiotherapy. Journal of Physics: Conference Series, vol. 1043, 2018; 1-15
- 3 S. Agostinelli et al. Geant4-a simulation toolkit. Nuclear Instruments and Methods in Physics Research A,
- 4 M. Constantina et al. Modeling the TrueBeam linac using a CAD to Geant4 geometryimplementation: Dose and IAEA-compliant phase space calculations. Medical Physics, vol. 38, 2011; 4018-4024

CONTACT INFORMATION

Kentaro Takahashi: mm19020@st.kitasato-u.ac.jp

◆ BACKGROUND COMPONENTS

Table 1 Simulated relative contribution of detected photons.

Source	<10 MeV	511 keV
Phantom	1.00	1.00
Jaws	0.42	0.90
Couch	0.07	0.06
Floor	0.07	0.17

■ The relative contribution of annihilation photons from the jaws was comparable to that from the phantom. The background from the couch and floor was less than 20%, as shown in Table 1.