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INTRODUCTION RESULTS RESULTS

Adaptive imaging and gated radiotherapy treatment involves In Figure 2, the predicted respiratory displacement from the UNET shows a good approximation of the actual displacement (r>0.6 up to 1.5 s).
making decisions in response to patient respiratory phase. From this prediction, respiratory phase was calculated. 0350
Therefore, the ability to accurately determine phase is paramount = 0.325 4
and is constrained by adequate past information to inform a model The state-of-the-art phase predictor incorrectly estimated the phase between the 100th and 180th sample due to the previous respiration E. 0300
as shown in Figure 1. cycle being smaller (50 vs 150). The UNET calculates the respiratory phase incorrectly in the middle (50th -100th samples) at the end of the £ 0275 |
respiratory cycle (150th-160th samples) due to incorrectly calculated turning points. * 0.250 |
Current state of the art struggles to predict beyond a 500 ms 0225
horizon which is problematic as current hardware and software The RMSE linearly increased until 1.5s while the Pearson correlation remained above 0.6 (Figure 3). - r r r " ;

latencies are 250 ms.

= Prediction Horizon (s)
Overall, the UNET did not offer any benefit compared to state-of-the-art method to predict phase with RMSE of 0.084 vs 0.019 [1]. £ 08
The aim of this work was to investigate if a 5s phase prediction 2
horizon can be achieved. § 0.6
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Models are constructed based on  Predict respiratory amplitude E
previous respiratory information  or phase to inform the system |02 -
when to trigger imaging n CONC LUSION S
0.0 . ; . . . : This is the first implementation of machine learning to predict
Figure 1: Imaging is triggered based on phase models 0 50 100 150 200 250 respiratory phase. While the overall prediction was not better than
Time {samples) the state of art [1], we believe that it would could offer benefits
i - . during erratic breathing.
M ETHOD — Respiratory displacement = Phase calculated [1]

With an increasing demand to perform more complex computations
on the fly to improve image quality, it is likely that an associated

system lag would increase. Therefore, mitigating against this lag will
become more important in the future.

=== Predicted respiratory displacement —— Phase calculated UNET

A 24 lung cancer patient study with ~22 hours of RPM data and
CAPNOBASE (42 patients, ~6 hours) datasets [3,4] were fused,
resulting in a dataset containing ~2.3 million training/validation
examples.

Figure 2: Respiratory displacement and phase calculations
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