

A comparison of prediction models in autocorrelated processes for quality assurance

j Lah^{1*}, G Kim², D Shin³

- 1 Myongji Hospital, Hanyang University College of Medicine, Goyang-si, Korea,
- 2 University of California, San Diego, La Jolla, CA,
- 3 National Cancer Center, Goyang-si, Korea.

INTRODUCTION

We expect that the forward direction of quality improvement will enable automatic process control, such as the machine performance check (MPC). The approach used in automatic process control is to predict the next observation, and then use the mechanism to adjust so that the observation will be closer to the desired target of quality assurance (QA). With the growing demand for automatic QA in radiation therapy, process characteristics may present various types of dependencies in time series and data are more likely to be autocorrelated. The autocorrelation can significantly affect the accuracy and overall performance of the predictive QA system. The nature of QA processes might cause difficulties in predicting for the future target because of its complicated structure. We compared the accuracy of predictive models for autocorrelated QA data using the machine learning method, artificial neural networks (ANNs) and the traditional approach, the autoregressive integrated moving average (ARIMA).

METHOD & MATERIALS

Data were obtained from a clinical proton beam (IBA Proton Therapy System-Proteus 235) at the National Cancer Center in Korea In this study, sets of data with different patterns (non-autocorrelation and autocorrelation) were deployed to compare the performance of three popular predictive models, ANNs and ARIMA. This aspect was crucial because it might enhance the predicting capability by utilizing autocorrelation as a basis. ARIMA model essentially consists of three components; an autogressive part, a moving average part, and an integrated component. The correlated data is analytically measured by a simple autocorrelation function:

$$\rho(k) = \frac{Cov(x_t, x_{t-k})}{V(x_t)}, \qquad k = 0, 1,$$

where $Cov(x_t, x_{t-k})$ is the covariance between observations using k time periods apart, and it is assumed that the observations with constant variance given by $V(x_t)$.

METHOD & MATERIALS

Here the value of ρ_k is estimated with the autocovariance function:

$$r(k) = \frac{\sum_{t=1}^{n-k} (x_t - \bar{x})(x_{t-k} - \bar{x})}{\sum_{t=1}^{n} (x_t - \bar{x})^2}, \qquad k = 0, 1, ..., K$$

The value of the autocorrelation function at lag 0 is 1.

The artificial neural networks (ANNs) offer an alternative to traditional statistical approaches for predictive modeling when non-linear patterns exist. For the ANNs calculations, approximately 2183 time steps were divided into three sets; 70% in training, 15% in testing, and 15% in the validation.

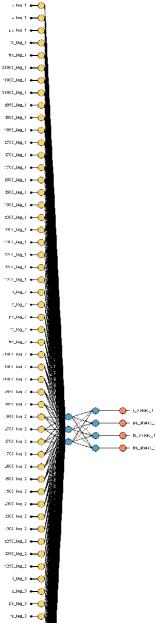
- •A typical ANNs consists of 4 interconnected layers of nodes (neurons), including an input layer containing 1 node per independent variable, the first and second hidden layers, and finally, an output layer with 1 node. Each layer connected to another layer with interconnections and adaptive weight values. The neurons were connected to next layer neurons with adjustable weights. Training the network consisted of using a training data set to adjust the connection weights to minimize the error between observed and predicted values. This training was performed according to a Levenberg-Marquardt and quasi-Newton algorithm.
- •We use the mean squared error (MSE) to evaluate the error measurement for the predictive model and to make adjustment based on the results. MSE is the average of the squared errors of the prediction. MSE gives greater weight to the larger errors and can be a good measure if the objective is to minimize the larger errors:

MSE = E(f)² =
$$\frac{\sum_{t=1}^{T} (A_t - F_t)^2}{T}$$

where, A_t is the actual value in period t, Ft is the forecast value for period t.

RESULTS

The results indicated that the ANNs is a more powerful and accurate predictive quality than ARIMA in daily output. The ANNs is effective for detecting autocorrelation and provides a prediction of the QA process average will be taken at the next time. This signified that the autocorrelation structure of QA data has no effect on the performance of the ANNs model. Although the ARIMA model was based on the autocorrelation structure, it still had higher MSE than the ANNs.



z1000_lag_0 -

7611_lag_1 ←

Mall_lag_(←

7:01_lag_1 +

optimal choice.

Table1. The input values and their corresponding output values; A neural network produces a set of outputs for each set of inputs applied. The outputs depend, in turn, on the values of the parameters.

	Value	
r_lag_1	2.66368	
z laq 1	-4.45000	
ps_lag_1	925.217	
ts_lag_1	12 9486	
trs_lag_1	9.57055	
z1000_lag_1	147.888	
t1UUU_lag_1	11.4892	
tr1000 laq 1	7.07853	
z050 lag 1	1402.67	
t850_lag_1	6.70606	
lr850_lag_1	-2 4578	
∠700_lag_1	2856	
t700_lag_1	-0.493544	
tr/UU_lag_1	13.629	
z600 lag 1	5267.57	
t500_lag_1	-15.3406	
tr500_lag_1	-31 0803	
/300_lag_1	8584 82	
t300_lag_1	-40.0085	
	-51.5826	
tr3UU_lag_1		
Z26U_lag_1	9610.05	
t250 lag 1	-46.0550	
tr250_lag_1	-57.4351	
r_lag_2	2 55783	
z_lag_2	-4.45831	
ps_lag_2	925.216	
ts_lag_2	12.9474	
tro lag 2	9.56833	
z1000_lag_2	147.070	
t1000_lag_2	11.4881	
lr1000_lag_2	7.07652	
z850_lag_2	1402.65	
t850_lag_2	6.70509	
tr86U_lag_2	2.46242	ı
z700 lag 2	2055.90	
t700_lag_2	-0.492935	
tr700_lag_2	-0.492933 -13 fi311	ı
z500_lag_2	5287.58	ı
	-15.3473	
t500_lag_2		Į
tr6UU_lag_2	-31.077	Į
z300_lag_2	8584.84	
t300 laq 2	-40.0077	Į
tr300_lag_2	-51.5806	
7250_lag_2	9610.06	Į
l250_lag_2	-46.8551	
tr250_lag_2	-57.4346	Į
r_lag_3	2,66227	Į
z lag 3	4.45271	Į
ps_lag_3	925.21	
ts_lag_3	12.9476	
lrs_lag_3	9.56909	
z1000_lag_3	147.822	
ti 000_lag_3	11.4851	
tr1000_lag_3	7.0753	
z050 laq 3	1402.6	
t050_lag_3	6,70472	
tr850_lag_3	-2 45901	
z700_lag_3	2855.93	
t700_lag_3	-0.493362	
tr/UU_lag_3	-13.6284	
z500 lag 3	5267.51	
t500 laq 3	-15.3470	ı
tr500_lag_3	-31.0769	
z300_lag_3	8584 78	
l300_lag_3	-40.0062	
tr300_lag_3	-51.5864	ı
z26U_lag_3	9610.02	ı

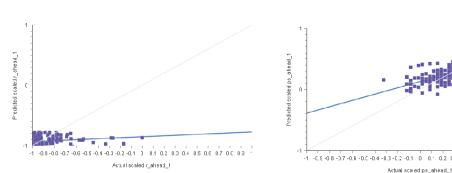
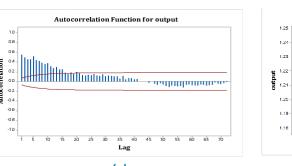


Figure 2. The linear regression for the scaled output r_ahead_1. The predicted values are plotted versus the actual ones as squares. The coloured line indicates the best linear fit. The grey line would indicate a perfect fit..



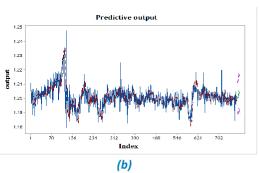


Figure 3 (a) Autocorretion function **(b)** Predictive output using ARIMA model (blue line) and ANNs model (red line)

CONCLUSIONS

Until now, for the QA activities, there are typically two approaches used, being run to corrective and preventive maintenances. The corrective maintenance, known as a run-to failure, starts in the event of a machine failure. The preventive maintenance, including inspections, repairs, replacements, refers to a set of activities to be carried out within a certain period on a set regular frequencies. However, numerous QA activities are running on a daily and monthly basis, but we recognize the fact that it should be simple, rapid, and more efficient. Therefore given (a) these environmental changes and (b) economic feasibility of the most innovative and advanced technologies, the paradigm for the QA activities can be shifted from the corrective or preventive maintenances to the predictive maintenance. The predictive maintenance provides a new perspective and a philosophy on the maintenance strategies to achieve a maximum life expectancy of machines while minimizing the risk of failure. This approach is thus saving a great amount of time and considerable resources.

ACKNOWLEDGMENTS; This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2018R1D1A1A02085342)