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INTRODUCTION RESULTS The confu§ion matrix (below, Table 1)
presents (input on left, output on top)

the nominal classification accuracies of
the presented neural network. The

Real-time imaging has potential to greatly increase the effectiveness of proton Event classification and sorting using a neural network is feasible to at least 80% average accuracy (range 64%-97%). This improves
beam therapy for cancer treatment. One promising method of real-time

imaging is the use of a Compton camera to detect prompt gamma rays, which the good data (properly ordered and true coincidence) to bad (improperly ordered or false coincidence) ratios by 33X. This results in

SIS GAIittad By-the beam, i diderta [Sconstict theirorgin: However, significant improvement of both reconstructed images and profiles. Additionally, the beam shape and range is readily visible even at
because of limitations in the Compton camera's ability to detect prompt

: e : i numbers indicate event types and output
gammas, the data are often ambiguous, making reconstructions based on our nominal classification accuracy once the data is classified by the neural network. orders, with 1, 2, and 3 being the actual
them unusable for practical purposes. Deep learning's ability to detect ’ P

subtleties in data that traditional models do not use make it one possible interaction orders contained within the

candidate for the improvement of classification of Compton camera data. We event, and 4 being a spurious interaction.
show that a suitably designed neural network can reduce false detections and

misorderings of interactions, thereby improving reconstruction quality. CONCLUSION [123] permUtations are triples, [124] and
[214] are doubles, [444] is false doubles

Deep neural networks offer a new method to improve both data quality and data quantity of OFtripies, and all otrier cases are aouble-
AlM to-triple events. Properly classified events

: e : 0

Assess the abilty of a deep artifical neural network to clasify and order Compton camera data. With classifications accuracies of greater than 80%, we were able to ean beused for reconstriction, while

Coinpton;cainere:data!ta.mprove reconstruction-quality improve our good/bad coincidence ratio from 0.092 (uncorrected) to 3.04 (corrected), with a incorrectly classified events contribute
1.9X increase in useable events noise. False events can be rejected.

No CI ficat N I CI ficat i 90% Classification 80% Classification . . . e . . e
METHOD Dot =l B RACTRCLCIRRICation Table 1: Confusion matrix of nominal event classification and sorting ability

We used a validated simulation (Ref 2) to generate labeled Compton camera
data produced by prompt-gammas emitted from a 150 MeV proton pencil
beam incident on a HDPE phantom at 180 kMU/min. The possible event types
can be doubles (2 interactions in an event), triples (3 interactions), doubles-to-

123 132 213 231 312 321 124 214 412 421 134 314 234 324 444
123 [0.6637][0.0601)]0.0347][0.0378]{0.0185]]0.1019]|0.0000]|0.0000{[0.00850.0119]J0.0034} J0.0039}[0.03 14{[0.0220}f0.0023
132 [0.0618J[0.6394][0.0309] 0. 0.0551][0.0587][0.0000][0.0000][0.0048][0.0035][0.0131] [0.0139][0.0257][0.0326] [0.0027
triples (2 interactions from the same gamma plus an interaction from a 0.0215/0.0180}f0.7229]o. 0.0615][0.0382][0.0000][0.0000][0-0069][0.0130][0.0188] [0.0165][0.0064][0.0045][0.0032
different gamma) and false doubles or triples (all events from different 0.0197][0.0183]0.0515[0.7522][0.026 1][0.0669][0.0000][0.0000]f0.0136}[0.0136][0.0098][0.0150][0.0041][0.0064]f0.0027
gammas). Data is output in a random order, rather than the order in which ; : 0.0292][0.0515][0.0521][0.0358][0-6709][0.0757][0-0000][0-0000]f0.0032][0-0047][0.0136]0.0229][0.0207][0-0177][0.0020
they occurred. Interaction data (energy deposited, 3D position) was labeled £ S o it : ’ ! : 3 ; : : 0.0439]|0.0217]j0.0298|0. 0.0196]]0.7563(]0.0000{{0.0000)10.0082 U.0195||U.0022 0.0041]{0.0129 0.0195"0.0023
based on actual event order (e.g. 123 is a properly ordered triple, 132 is an . - ' 8 ; 0.0000}f0.0000{f0.0000}fo. 0.0000}f0.0000}f0-8200}f0. 1800][0.0000]f0.0000]f0.0000] f0.0000]J0.0000][0.0000]j0.0000
improperly ordered triple). Rt . 2 3 ) 15 0.0000|[0.0000|f0.0000][0. 0.0000||0.0000}f0.2208]J0.7792][0.0000}{0.0000][0.0000} {0.0000}j0.0000}[0.0000]j0.0000
' : ' ‘ 412 0.0039][0.0023}f0.0018]l0.0053|[0.0017]{0.0048][0.0000][0.0000]|0.9168f0.0567]|0.0000}[0.0000f[0.0000}|0.0000{0.0067|
421 0.0026}{0.0016]0.0028)0.0035][0.0035]0.0068) 0.0000]0.0000][0.0000][0.9669](0.0036] 0.0000f{0.0000|0.0000] j0.0087
EoA , ; ‘ 134 [0.0032][0-0032][0.0047][0-0034][0-0030][0.0022][0-0000][0-0000][0.0000][0-0059][0-9379] [0-0256] [0-0000][0.0000]f0.0107
Input and output: dense 15 neuron layer. 1.36 million labeled events : : P 3140.0020]f0.0025}]0.0040} 0.0057]0.0060]]0.0066) [0.0000][0.0000][0.0000] 0.0000ff0.0574] [0.9070}{0.0000 0.0000][0.0089)

Hidden: 25 dense neuron layers, fully connected, 4096 square 2340.0232][0.0134f0.0046}[0. 0.0141[0.0243}f0.0000}f0.0000{[0.0000] n.ooon"o.nnno 0.0157|[0.8616[0.0178}f0.0184
dimensions, SeLU activation 324/0.0083/]0.0094]10.0028]]0.00710.0047][0.01 1 2]0.0000][0.0000f0.0000}{0.0000f0.0000} j0.0000]f0.0278f0.9173f0.01 14]
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We used the taki supercomputer cluster at UMBC to train a fully connected
network with the following parameters:

Training: residual skip every 4 layers, 10 learning rate, batch size 8192,
1000 epochs.

For all data we performed simple back-projection image reconstructions on RE FE RE N CES Figure 1: Simple back-projection reconstructions of Compton camera data at different classification and ordering accuracies. The confusion
the available data, excluding data that was correctly labeled as false 1) Jonathan N. Basalyga, Gerson C. Kroiz, Carlos A. Barajas, Matthias K. Gobbert, Paul Maggi, and Jerimy Polf. Use of Deep Learning to matrix for the nominal accuracy is given in Table 1. All units are in mm

coincidence. Properly labeled data was reordered, and improperly labeled data Classify Compton Camera Based Prompt Gamma Imaging for Proton Radiotherapy. Technical Report HPCF-2020-14, UMBC High
was passed as-is into the reconstruction routine. Performance Computing Facility, University of Maryland, Baltimore County, 2020.
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In addition to the current achievable classification accuracy (labeled nominal, model for detector timing effects in Compton-camera based prompt-gamma imaging for proton radiotherapy. Phys. Med. Biol., online
details in Table 1) we generated data at artificial, uniform accuracies of 100% April 22, 2020.Xu D, He Z. Filtered back-projection in 41T Compton imaging with a single 3D position sensitive CdZnTe detector. IEEE Transactions Research supported by the NCI NIH under award number Paul Maggi: paul.maggi@umm.edu
(perfect), 90% and 80%. on Nuclear Science. 2006 Oct 16;53(5):2787-96. 1R01CA187416-01A1 and the NSF under grant no OAC-1730250.
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