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INTRODUCTION

In the treatment of lung cancer, spatially-encoded measures of pulmonary function may
facilitate radiation treatment plans that can reduce dose to functioning lung, thus
reducing the rate of thoracic complication from ionizing radiationlll. A key limitation of
pulmonary functional imaging is its dependence on exotic radiotracers and specialized
imaging equipment. As such, many medical centers especially small clinics, do not have
access to these sophisticated imaging capabilities.

Several validation studies of computed tomography ventilation imaging (CTVI) have
demonstrated that 4DCT images contain valuable information that is related to
pulmonary function(231. A recent study performed a radiomic analysis of the lungs and
investigated associations with pulmonary functions¥. Key findings demonstrated that
lung texture and density were collectively responsible for the association between
pulmonary function and CT images. Remarkedly, these results suggest potential
radiomic-based CTVI approaches that move beyond conventional first-order statistics
and Jacobian calculations.

AlM

This study is aimed to develop a pulmonary radiomic filtering technique, where radiomic
features are generalized as image filters and spatially-mapped throughout the lungs to
create a multi-dimension tensor object describing the lung tissue. Here, we apply such a
technique to derive novel CTVI images and demonstrate that differences in radiomic
feature maps throughout the respiratory cycle are comparable to both conventional
CTVI techniques and PET-based functional imaging.

METHOD

This study included 25 non-small lung cancer patients with Galligas 4DPET/CT images
from the VAMPIRE dataset[>6l. The overall workflow is shown in figure 1.
CT images in exhale phase (EOE) and inhale phase (EQI) were both registered to
average phase using contour-based deformable image registration (DIR).
Sixty-two radiomic features were spatially extracted from deformed images using
sliding window kernels and in-house solfware.
Sixty-two delta feature maps were derived from EOE and EOI feature maps.
Delta feature maps were compared with reference Galligas PET images by
calculating voxel-wise Spearman correlation.
Different kernel sizes were applied to characterize the sensitivity of this approach.
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Figure 1. Schematic flow chart for the study generating delta feature maps from thoracic 4DCT.
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RESULTS

Quantitative and qualitative comparison

The Spearman Correlations (rg) were calculated between all 62 delta feature maps
(kernel size 5x5x5 cm3) and their corresponding reference Galligas PET images for
a cohort of 24 subjects. These results are shown in figure 2. For comparison, the
correlations based on average CT images are listed as the 63 feature. The overall
highest rg values were achieved by No. 1 first-order energy, with a range of

0.18 <rg < 0.69, and average rg = 0.45 + 0.16. We compared the correlation
results with CT ventilation studies that utilized the same dataset[?l. The mean
correlation of HU-based CTVI is iy = 0.42 + 0.20 and Jacobian-based CTVIis 7y =
0.19 + 0.23.
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Figure 2. Boxplot showing the distribution of Spearman correlations between delta feature maps and
the corresponding Galligas PET images. Each box refers to a radiomic feature. For each box, the upper,
middle, and lower edges show the upper, middle, and lower quartiles. The whiskers extend to the most
extreme data points not considering outliers. Outliers are indicated by “+” symbols.

Illustrating example in Figure 3 shows the changes in two radiomic feature maps
as measured across registered EOE and EOI phases of a set of 4DCT images.
Corresponding Galligas PET functional images are also shown as references for
pulmonary functions. The selected features, first-order energy and short run high
gray level emphasis (SRHGLE), demonstrated relatively high correlations with
reference Galligas PET images (RefVls).

CONCLUSIONS

We have built a novel voxel-based radiomic feature extraction approach to quantify
ventilation function using thoracic 4DCT. Statistical analyses results shown delta feature
maps were correlated with Galligas PET images. The highest spearman correlation was
achieved by first-order energy with mean value of fg = 0.45 + 0.16, which is comparable
to the performance with HU-based CTVI. It has the potential to generate synthetic
ventilation images to support functional avoidance radiotherapy and improve the plan
quality for lung cancer patients.
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Figure 3. Comparing delta first-order energy map, deita gray level run length-short run high gray level
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Figure 4. (a) Mean Spearman Correlations with Galligas PET images across all patients versus kernel dimension in x
direction; {b) Mean Spearman Correlations with Galligas PET images across all patients versus number of voxels in kernel.

Figure 5 shows an example of first-order energy delta maps that were derived based on different
kernels. Similar to the case in figure 5, all the feature maps generated with small kernels are not
continuous, with large fluctuations. With increasing kernel sizes, delta feature maps become more
and more smooth. However, when using extreme large kernel sizes, sub-regional hot areas will
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emphasis (GLRLM-SRHGLE) map with reference Galligas PET images for different cases. Arrows point to the

. : A ) propagate to other regions.
regions of interest. For delta feature maps, the labeled numbers are Spearman correlations with Galligas PET.
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Generally, in subject 22 and subject 23, the two feature maps demonstrate good
agreement with RefVIs. In subject 6, similarities are observed in the right lung, but
the left apex shows difference: feature maps indicate defect in left apex which does
not exist in RefVI. In the worst case of subject 3, feature maps indicate large defect
regions both in right and left lung, while RefVI only indicates marginal defect.
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Impact of kernel sizes

We characterized the sensitivity of our approach to kernel size. The mean
correlations between RefVls and first-order energy maps derived using different
kernels are plot in figure 4. Kernels are divided into four groups: (1) cubic kernels,
with sizes from 10x10x2 to 80x80x16 (correspond to 1x1x1 cm3 to 8x8x8 cm3, x
direction is from posterior to anterior, y direction is from right to left, and z
direction is from foot to head); (2) cuboid kernels, with sizes from 10x10x4 to
80x80x32; (3) cuboid kernels, with sizes from 10x20x2 to 80x160x16 ; (4) cuboid
kernels, with sizes from 10x10x10 to 80x80x80.
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at low in-plane widths in x direction, correlations increase with kernel width in all
four groups. In group 1 and group 2, correlations finally saturate with increasing
kernel sizes, while in group 3 and group 4, the correlations drop down after the

kernel exceeds the range of the lung.
sizes used in the derivation.
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Figure 5. Comparing delta feature maps derived with different kernel sizes with corresponding Galligas PET image. The
enclosed numbers are Spearman correlations with Galligas PET. The numbers above each delta map indicate the kernel
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