Quantitative Imaging of ¹⁷⁷Lu in the Presence of ⁹⁰Y for Peptide Receptor Radionuclide Therapy: A Simulation Study Qurit Cassandra Miller^{1,2}, Carlos Uribe^{3,4}, Xinchi Hou^{2,4}, Arman Rahmim^{1,2,3,4} and Anna Celler⁴ ¹Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, CA ²Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, CA ³PET Functional Imaging, BC Cancer Research Centre, Vancouver BC, CA ⁴Department of Radiology, University of British Columbia, Vancouver, BC, CA #### INTRODUCTION Dual-isotope peptide receptor radionuclide therapy (PRRT) using ¹⁷⁷Luand ⁹⁰Y-DOTATATE is a promising treatment for neuroendocrine tumours. 30% of patients undergoing ¹⁷⁷Lu therapy may be undertreated¹. Personalized dosimetry should be performed so the maximum dose can be delivered to the tumours while sparing healthy tissues. Dosimetry of both ¹⁷⁷Lu and ⁹⁰Y can be performed using ¹⁷⁷Lu SPECT imaging, assuming identical biodistributions of ¹⁷⁷Lu- and ⁹⁰Y-DOTATATE. However, Bremsstrahlung photons created by ⁹⁰Y might cloud the ¹⁷⁷Lu spectrum, making activity quantification inaccurate. ### AIM The aim of this work is to determine if quantitative SPECT imaging of ¹⁷⁷Lu in the presence of ⁹⁰Y is possible. # **RESULTS** Figure 2: Reconstructed images **Top:** 1.5 Mbq/ml ¹⁷⁷Lu + 0 MBq/ml ⁹⁰Y in the sphere, 0.15 MBq/ml ¹⁷⁷Lu in the phantom **Bottom:** 1.5 Mbq/ml ¹⁷⁷Lu + 6 MBq/ml ⁹⁰Y in the sphere, 0.15 MBq/ml ¹⁷⁷Lu + 0.6 MBq/ml ⁹⁰Y in the phantom Both isotopes were in sphere A. Figure 3: Energy spectra simulated with GATE as would be acquired by the SPECT camera. The dashed and dotted lines show the location of the 3% and 10% scatter windows, respectively. The solid lines show the location of the photopeak window. The activities of ¹⁷⁷Lu and ⁹⁰Y were both 16.6 MBq and there was 46.2 MBq of each in the #### QUANTIFICATION When the activity of ¹⁷⁷Lu was held fixed, adding ⁹⁰Y decreased the quantitative error (Figure 5a) ightarrow This is the opposite of what was expected; it was thought adding $^{90}{ m Y}$ would cause activity overestimation This phenomenon occurred because ⁹⁰Y reduces errors associated with the TEW scatter correction method ightarrow Scatter correction and therefore activity quantification became slightly more accurate when $^{90}{ m Y}$ was present #### **NOISE** CNRs were not significantly impacted by the amount of ⁹⁰Y (Figure 5b) → In every configuration, the CNR was above the threshold of 5 suggested by the Rose criterion lower than the concentration in the spheres, and the solid lines show when the activity concentration in the cylinder was 10 times lower than the concentration in the spheres. Figure 5 a) Quantitative errors (left-top) and b) contrast to noise ratios (left-bottom). Both isotopes were in sphere A. The dashed lines show when the activity concentration in the cylinder was 5 times #### **SCATTER WINDOW WIDTHS** We found statistically significant (p < 0.001) differences in *E* and *CNR* between the large and narrow window widths → Quantitative errors were slightly better when a narrower window width was used → CNRs were generally better when the wider window width was used ## **METHODS: SIMULATION** Monte Carlo GATE software was used to simulate 3.3 cm radius spheres filled with 177 Lu (range: 0.1-1.5 MBq/ml) and/or 90 Y (range: 0-9 MBq/ml) placed in a 20 cm x 20 cm cylindrical water phantom which was also filled with a uniform activity of each isotope, either 5 times lower or 10 times lower than the activity in the spheres (Figure 1). 540 total simulations were created by varying the sphere/background activity concentration and the ⁹⁰Y location; 5 realizations were simulated for each configuration. A narrow (3%) and a large (10%) scatter window width for triple energy window (TEW) scatter correction² was investigated. Each configuration was imaged with a simulated Siemens MELP SPECT camera. Figure 1: Schematic representation of the phantom containing two 3.3 cm radius spheres. Sphere A was always filled with ¹⁷⁷Lu. ⁹⁰Y was either placed in sphere B or in sphere A mixed with ¹⁷⁷Lu. This was done to determine if alterina the location of ⁹⁰Y affects ¹⁷⁷Lu ayantification. ## **METHODS: ANALYSIS** Projections were reconstructed using 3D OSEM with 8 subsets and 8 iterations with scatter correction, attenuation correction, and resolution recovery. For **segmentation**, a 3.5 cm radius spherical VOI was placed over sphere A, which was always filled with ¹⁷⁷Lu. Image counts were converted to an activity using a calibration factor derived from a scan of a 177 Lu point source. The quantification error (E) and contrast to noise ratio (CNR) was determined for every configuration. $$E = \frac{1}{R} \sum_{r=1}^{R} \frac{A_{est,r} - A_{true}}{A_{true}} \times 100\%$$ R = number of realizations (5), $A_{true} =$ activity simulated in the sphere with GATE, $A_{est} =$ estimated activity in the sphere post-reconstruction, $M_{voi}/M_{bkg} =$ mear number of counts in the VOI or background region respectively (the background region was a 3.5 cm radius sphere placed in the phantom under the VOI), $\sigma_{bkg} =$ standard deviation of counts in the background region ## CONCLUSIONS Image quantification for ¹⁷⁷Lu remains within 8% even when very large amounts of ⁹⁰Y are used. 0.8 MBq/ml ¹⁷⁷Lu 1.5 MBq/ml ¹⁷⁷Lu ⁹⁰Y may slightly increase accuracy of activity quantification because of a reduction of errors associated with the TEW scatter correction method. The presence of ⁹⁰Y does not significantly impact image noise. Quantitative imaging of ¹⁷⁷Lu in the presence of ⁹⁰Y is feasible with high accuracy and no reduction of lesion detectability. #### | ACKNOWLEDGEMENTS We gratefully acknowledge funding by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants RGPIN-2017-04914, RGPIN-2019-06467, and PGSD-411297574 and Jean-Mathieu Beauregard (Université Laval, Quebec, CA) for providing us with data which we based our simulations on. #### REFERENCES ¹Ljungberg M et al. MIRD pamphlet no. 26: Joint EANM/MIRD guidelines for quantitative ¹⁷⁷Lu SPECT applied for dosimetry of radiopharmaceutical therapy. *J. Nucl. Med*, 2016. ²Ogawa K et al. A Practical Method for Position-Dependent Compton-Scatter Correction in Single Photon Emission CT. *IEEE Trans. Med. Imaging*, 1991. ## **CONTACT INFORMATION** Cassandra Miller (cassandramiller@phas.ubc.ca) Arman Rahmim (arman.rahmim@ubc.ca) Quantitative Radiomolecular Imaging & Therapy (Qurit) Lab (www.qurit.ca)