

An Auto-Accessing Method for Reducing the Reading Time of Digital Breast Tomosynthesis with a Synthetic Mammogram

H. Kim 1 and S. Cho 1

1Korea Advanced Institute of Science and Technology, Daejeon, South Korea

INTRODUCTION

- The combined use of DM and DBT images has shown to increase breast cancer diagnostic performance.^{1,2}
- This <u>combo mode acquisition</u>, however, raises concerns on <u>increased data acquisition time</u>, <u>interpretation time</u>, <u>and radiation</u> dose.³
- One possible solution to reducing radiation dose is composing a synthetic mammogram (SM) from the DBT slices.^{4,5}
- Clinical studies have shown that the use of SM is not inferior to the use of DM.^{6,7}

AIM

- A method reducing the reading time of the DBT has not been studied much yet.
- Besides, one of the significant artifacts in the SM image is pseudo-calcifications.
- The presence of pseudo-calcifications makes radiologists read through DBT slices to <u>check whether or not the calcification is</u> <u>real, which is time-consuming and laborious</u>.⁸
- Examples of the reconstructed DBT slices and the generated SM image are presented in Fig. 1.
- One can rapidly carry out a global assessment of the breast by using the SM image, while the multiple reconstructed <u>DBT slices</u> provide depth-differentiated information of the breast anatomy.
- If one can automatically access DBT slice-in-focus information of suspicious findings in the SM image, it would help reducing reading times substantially.

Fig 1. Reconstructed DBT slices and synthetic mammogram images

METHOD

- In synthesizing a mammogram from DBT slices, we generated a linear structure weighting map by use of the oriented bins operator.⁹
- We computed a <u>weighted forward projection</u> by use of the linear structure weighting map accordingly.
- For an auto-accessing method, we additionally generated a <u>linear structure weighted maximum intensity projection</u> (LS-MIP) and a <u>linear structure weighted maximum intensity depth map</u> (LS-MID).

- For a selected ROI in the SM image, we estimated the depth of the object using the LS-MIP and the LS-MID.
- Since ROI would also contain background regions, we only took pixels having the top 10% high values inside the ROI in the LS-MIP.
- We collected the values of the <u>chosen pixels in the LS-MID</u> and <u>calculated the counts of each depth.</u>
- After that, we displayed the reconstructed DBT slices at the calculated top three counted depths.
- For evaluation, We scanned CIRS breast phantom and collected patient DBT data.
- We reconstructed DBT images from the acquired DBT projections by use of the expectation-maximization algorithm.
- We synthesized SM, LS-MIP, and LS-MID images from the reconstructed DBT images.

RESULTS

- In Fig. 3, we displayed the proposed auto-accessing processes and the reconstructed DBT slices at the calculated top three frequently counted depths of the selected ROI containing five real micro-calcifications and a pseudo-calcification.
- The calculated depths led to two separate depths where multiple calcifications and a calcification-like structure exist.
- Because the depth where the single calcification-like structure exists is far from the micro-calcification cluster (MCC), it is likely to be a pseudo-calcification.

- We have also applied the proposed method to the patient data, which contains complex overlapped structures.
- Consistently, the proposed method successfully estimated appropriate slice numbers for the MCC and the bright linear area in the fiber structure.

CONCLUSIONS

- We have developed an auto-accessing method to seek reconstructed DBT slices contributing mainly to the selected ROI in the SM, which can hopefully reduce the reading time of DBT.
- The experimental phantom and clinical study showed the proposed method accurately figured the depth of selected ROIs from the SM image in the DBT slices.

ACKNOWLEDGEMENTS

We thank Dr. choi in Korea Electrotechnology Research Institute and DRTECH for assistance in data collection.

REFERENCES

- 1 Rafferty E et al. Assessing Radiologist Performance Using Combined Digital Mammography and Breast Tomosynthesis Compared with Digital Mammography Alone: Results of a Multicenter, Multireader Trial. Radiology 2013; 266;: 104-113
- 2 **Skaane P et al.** Prospective trial comparing full-field digital mammography (FFDM) versus combined FFDM and tomosynthesis in a population-based screening programme using independent double reading with arbitration. *Eur. Radiol.* 2013: 23:: 2061–71
- 3 **Zuley M et al.** Comparison of Two-dimensional Synthesized Mammograms versus Original Digital Mammograms Alone and in Combination with Tomosynthesis Images. *Radiology* 2014; 271;: 664-71
- 4 Wei J et al. Synthesizing mammogram from digital breast tomosynthesis. *Phys Med. Biol.* 2019; 64;: 045011
- 5 van Schie G et al. Generating synthetic mammograms from reconstructed tomosynthesis volumes. *IEEE Trans. Med. Imaging* 2013; 32:: 2322–31
- 6 Mariscotti G et al. Comparison of synthetic mammography, reconstructed from digital breast tomosynthesis, and digital mammography: evaluation of lesion conspicuity and BI-RADS assessment categories. *Breast Cancer Res. Treat.* 2017; 166;: 765-773
- 7 **Choi J et al.** Comparison between two-dimensional synthetic mammography reconstructed from digital breast tomosynthesis and full-field digital mammography for the detection of T1 breast cancer. *Eur. Radiol.* 2016; 26;: 2538–46
- 8 Ratanaprasatporn L et al. Strengths and weaknesses of synthetic mammography in screening *RadioGraphics* 2017; 37;: 1913-1927
- 9 **Zwiggelaar R et al.** Linear structures in mammographic images: detection and classification *IEEE Trans. Med. imaging* 2004; 23:: 1077-1086

CONTACT INFORMATION

Seungryong Cho, E-mail: scho@kaist.ac.kr