

Image Quality Through Ultrasound-Compatible Cylinders for Transvaginal Ultrasound-Guided High-Dose-Rate Brachytherapy

Devin Van Elburg^{1,2}, Michael Roumeliotis^{1,2,3}, Aaron Fenster^{4,5}, Jessica Rodgers^{4,5}, Tyler Meyer^{1,2,3}

⁵ University of Western Ontario / Robarts Research Institute, London, ON

Purpose

To evaluate how ultrasound images are affected when captured through a hollowed sonolucent sheath designed for 3D transvaginal ultrasound (3DTVUS) guidance in gynecologic high-dose-rate brachytherapy.

Background

- 3DTVUS system developed at the University of Western Ontario⁽¹⁾ (Figure 2a)
- 3D image reconstructed from 2D sagittal images
- Transvaginal images acquired through sonolucent sheath because:
 - Rigid cylinder required to fix transperineal templates
 - Outer dimensions match 3cm dia. clinical cylinder; 3DTVUS images anatomically matched to treatment scenario
 - Sonolucent material minimizes ultrasound attenuation
- Effect of sheath on images requires characterization

Methods

- Sonolucent sheath constructed in-house:
- Material: RT-18 grade TPXTM plastic⁽²⁾
- Speed of sound: ~2090m/s (3)
- Inner/outer diameters: 22.1mm/30.0mm
- Bi-plane transrectal probe
- Acquisition settings: 9MHz, 50% gain, maximum depth
- Imaged the CIRS Model 045A Brachytherapy QA Phantom (Figure 1)
- Adapted AAPM TG-128⁽⁴⁾ prostate ultrasound QA recommendations
 - Baseline without sheath ('sheath-out')
 - Comparison with sheath ('sheath-in')

Transverse plane

Figure 1: Schematic of CIRS phantom sagittal and transverse planes, with spaced wires and contrast volumes. L=40.0mm, A=5.23cm², and V=20.0cm³.

Results and Discussion

- All tests in sagittal image plane passed TG-128 tolerances⁽⁴⁾
- Depth of penetration (#2), measured as phantom cavity edge to noise edge, was reduced by
 4.0mm due to physical thickness of sheath
- Lateral resolution (#3) degraded in transverse images (see Figure 2), but not in sagittal images
- Sheath has little effect on area and volume measurements

*Green = within tolerance, yellow = outside tolerance

- Air bubbles for sheath-in images can be problematic, must be careful when inserting probe into sheath
- Transverse image degradation not of concern since 3DTVUS images are reconstructed from 2D sagittal images

Table 1 – Adapted TG-128 tests comparing sheath-out and sheath-in images					
TG-128 Test #	Test	Baseline (sheath-out)	Measured (sheath-in)	Difference*	TG-128 Tolerance
2	Depth of penetration	56.9 mm	52.9 mm	-4.0 mm	10 mm
3	Axial resolution – transverse	0.4 mm	0.3 mm	-0.1 mm	1 mm
	Lateral resolution (near) – transverse	1.5 mm	2.7 mm	1.2 mm	1 mm
	Lateral resolution (far) – transverse	4.0 mm	6.0 mm	2.0 mm	1 mm
	Axial resolution – sagittal	0.6 mm	0.3 mm	-0.3 mm	1 mm
	Lateral resolution – sagittal	1.8 mm	2.1 mm	0.3 mm	1 mm
4	Axial scaling (40 mm) – transverse	40.0 mm	39.6 mm	-0.4 mm	2 mm / 2%
	Lateral scaling (40 mm) - transverse	40.3 mm	40.3 mm	0 mm	3 mm / 3%
	Lateral scaling (40 mm) - sagittal	40.1 mm	40.0 mm	-0.1 mm	3 mm / 3%
5	Area measurement (5.23 cm²)	5.31 cm ²	5.32 cm ²	0.2%	5%
6	Volume measurement (20.0 cm ³)	20.9 cm ³	20.8 cm ³	-0.5%	5%

Figure 2:

- (a)3DTVUS system secured to bed rails, with probe and sheath inserted in CIRS

 OA Phantom
- (b) Sheath-in sagittal image showing wires used for axial and lateral resolution tests. Little observable differences seen compared to sheath-out.
- (c) Sheath-in and (d) sheath-out transverse images which show that lateral resolution degraded with the addition of the sheath

Conclusion

Sagittal images acquired with and without the sonolucent sheath are within adapted TG-128 tolerances. Future work includes patient studies evaluating use of 3DTVUS-based workflows in both intracavitary and interstitial gynecologic high-dose-rate brachytherapy.

REFERENCES:

- ¹ JR Rodgers et al. 2019. J. Med. Imag. 6(2):025001. doi: 10.1117/1.JMI.6.2.025001
- ² Mitsui Chemicals, Rye Brook, NY
- ³ EL Madsen et al. 2011. Ultrasound Med. Biol. 37(8):1327-1339. doi:10.1016/j.ultrasmedbio.2011.05.023
- ⁴ D Pfeiffer et al. 2008. Med. Phys. 35(12):5471-5489. doi: 10.1118/1.3006337

EMAIL: devin.vanelburg@ucalgary.ca